# The computable model theory of forcing, Rutgers Logic Seminar, December 2023

This will be a talk for the Rutgers University Logic Seminar, December 4, 2023.

Abstract. I shall discuss the computable model theory of forcing. To what extent can we view forcing as a computational process on the models of set theory? Given an oracle for the atomic or elementary diagram of a model (M,∈M) of set theory, for example, there are senses in which one may compute M-generic filters G⊂ℙ∈M over that model and compute the diagrams of the corresponding forcing extensions M[G]. Meanwhile, no such computational process is functorial, for there must always be isomorphic alternative presentations of the same model of set theory that lead by the computational process to non-isomorphic forcing extensions. Indeed, there is no Borel function providing generic filters that is functorial in this sense. This is joint work with myself, Russell Miller and Kameryn Williams.

The paper is available on the arxiv at https://arxiv.org/abs/2007.00418.

# The universal finite set, Rutgers Logic Seminar, April 2018

This will be a talk for the Rutgers Logic Seminar, April 2, 2018. Hill Center, Busch campus. Abstract. I shall define a certain finite set in set theory $$\{x\mid\varphi(x)\}$$ and prove that it exhibits a universal extension property: it can be any desired particular finite set in the right set-theoretic universe and it can become successively any desired larger finite set in top-extensions of that universe. Specifically, ZFC proves the set is finite; the definition $\varphi$ has complexity $\Sigma_2$ and therefore any instance of it $\varphi(x)$ is locally verifiable inside any sufficient $V_\theta$; the set is empty in any transitive model and others; and if $\varphi$ defines the set $y$ in some countable model $M$ of ZFC and $y\subset z$ for some finite set $z$ in $M$, then there is a top-extension of $M$ to a model $N$ in which $\varphi$ defines the new set $z$.  The definition can be thought of as an idealized diamond sequence, and there are consequences for the philosophical theory of set-theoretic top-extensional potentialism.

This is joint work with W. Hugh Woodin.

# Pluralism in mathematics: the multiverse view in set theory and the question of whether every mathematical statement has a definite truth value, Rutgers, March 2013

This is a talk for the Rutgers Logic Seminar on March 25th, 2013.  Simon Thomas specifically requested that I give a talk aimed at philosophers.

Abstract.  I shall describe the debate on pluralism in the philosophy of set theory, specifically on the question of whether every mathematical and set-theoretic assertion has a definite truth value. A traditional Platonist view in set theory, which I call the universe view, holds that there is an absolute background concept of set and a corresponding absolute background set-theoretic universe in which every set-theoretic assertion has a final, definitive truth value. I shall try to tease apart two often-blurred aspects of this perspective, namely, to separate the claim that the set-theoretic universe has a real mathematical existence from the claim that it is unique. A competing view, the multiverse view, accepts the former claim and rejects the latter, by holding that there are many distinct concepts of set, each instantiated in a corresponding set-theoretic universe, and a corresponding pluralism of set-theoretic truths. After framing the dispute, I shall argue that the multiverse position explains our experience with the enormous diversity of set-theoretic possibility, a phenomenon that is one of the central set-theoretic discoveries of the past fifty years and one which challenges the universe view. In particular, I shall argue that the continuum hypothesis is settled on the multiverse view by our extensive knowledge about how it behaves in the multiverse, and as a result it can no longer be settled in the manner formerly hoped for.

Some of this material arises in my recent articles:

# The countable models of set theory are linearly pre-ordered by embeddability, Rutgers, November 2012

This will be a talk for the Rutgers Logic Seminar on November 19, 2012.

Abstract.  I will speak on my recent theorem that every countable model of set theory $M$, including every well-founded model, is isomorphic to a submodel of its own constructible universe. In other words, there is an embedding $j:M\to L^M$ that is elementary for quantifier-free assertions. The proof uses universal digraph combinatorics, including an acyclic version of the countable random digraph, which I call the countable random $\mathbb{Q}$-graded digraph, and higher analogues arising as uncountable Fraisse limits, leading to the hypnagogic digraph, a set-homogeneous, class-universal, surreal-numbers-graded acyclic class digraph, closely connected with the surreal numbers. The proof shows that $L^M$ contains a submodel that is a universal acyclic digraph of rank $\text{Ord}^M$. The method of proof also establishes that the countable models of set theory are linearly pre-ordered by embeddability: for any two countable models of set theory, one of them is isomorphic to a submodel of the other.  Indeed, the bi-embeddability classes form a well-ordered chain of length $\omega_1+1$.  Specifically, the countable well-founded models are ordered by embeddability in accordance with the heights of their ordinals; every shorter model embeds into every taller model; every model of set theory $M$ is universal for all countable well-founded binary relations of rank at most $\text{Ord}^M$; and every ill-founded model of set theory is universal for all countable acyclic binary relations. Finally, strengthening a classical theorem of Ressayre, the same proof method shows that if $M$ is any nonstandard model of PA, then every countable model of set theory—in particular, every model of ZFC—is isomorphic to a submodel of the hereditarily finite sets $HF^M$ of $M$. Indeed, $HF^M$ is universal for all countable acyclic binary relations.