Parallels in universality between the universal algorithm and the universal finite set, Oxford Math Logic Seminar, October 2018

This will be a talk for the Logic Seminar in Oxford at the Mathematics Institute in the Andrew Wiles Building on October 9, 2018, at 4:00 pm, with tea at 3:30.

Abstract. The universal algorithm is a Turing machine program $e$ that can in principle enumerate any finite sequence of numbers, if run in the right model of PA, and furthermore, can always enumerate any desired extension of that sequence in a suitable end-extension of that model. The universal finite set is a set-theoretic analogue, a locally verifiable definition that can in principle define any finite set, in the right model of set theory, and can always define any desired finite extension of that set in a suitable top-extension of that model. Recent work has uncovered a $\Sigma_1$-definable version that works with respect to end-extensions. I shall give an account of all three results, which have a parallel form, and describe applications to the model theory of arithmetic and set theory.


Leave a Reply

Your email address will not be published. Required fields are marked *