Forcing as a computational process

[bibtex key=”HamkinsMillerWilliams:Forcing-as-a-computational-process”]

Abstract. We investigate how set-theoretic forcing can be seen as a computational process on the models of set theory. Given an oracle for information about a model of set theory $\langle M,\in^M\rangle$, we explain senses in which one may compute $M$-generic filters $G\subseteq\mathbb{P}\in M$ and the corresponding forcing extensions $M[G]$. Specifically, from the atomic diagram one may compute $G$, from the $\Delta_0$-diagram one may compute $M[G]$ and its $\Delta_0$-diagram, and from the elementary diagram one may compute the elementary diagram of $M[G]$. We also examine the information necessary to make the process functorial, and conclude that in the general case, no such computational process will be functorial. For any such process, it will always be possible to have different isomorphic presentations of a model of set theory $M$ that lead to different non-isomorphic forcing extensions $M[G]$. Indeed, there is no Borel function providing generic filters that is functorial in this sense.

Burak Kaya, Ph.D. March 2016

Burak Kaya successfully defended his dissertation, “Cantor minimal systems from a descriptive perspective,” on March 24, 2016, earning his Ph.D. degree at Rutgers University under the supervision of Simon Thomas. The dissertation committee consisted of Simon Thomas, Gregory Cherlin, Grigor Sargsyan and myself, as the outside member.

Burak Kaya defense

The defense was very nice, with an extremely clear account of the main results, and the question session included a philosophical discussion on various matters connected with the dissertation, including the principle attributed to Gao that any collection of mathematical structures that has a natural Borel representation has a unique such representation up to Borel isomorphism, a principle that was presented as a Borel-equivalence-relation-theory analogue of the Church-Turing thesis.

Burak Kaya

Burak Kaya | MathOverflow profile | ar$\chi$iv profile

Abstract.  In recent years, the study of the Borel complexity of naturally occurring classification problems has been a major focus in descriptive set theory. This thesis is a contribution to the project of analyzing the Borel complexity of the topological conjugacy relation on various Cantor minimal systems.

 

We prove that the topological conjugacy relation on pointed Cantor minimal systems is Borel bireducible with the Borel equivalence relation $\newcommand\d{\Delta^+_{\mathbb{R}}}\d$. As a byproduct of our analysis, we also show that $\d$ is a lower bound for the topological conjugacy relation on Cantor minimal systems.

 

The other main result of this thesis concerns the topological conjugacy relation on Toeplitz subshifts. We prove that the topological conjugacy relation on Toeplitz subshifts with separated holes is a hyperfinite Borel equivalence relation. This result provides a partial affirmative answer to a question asked by Sabok and Tsankov.

 

As pointed Cantor minimal systems are represented by properly ordered Bratteli diagrams, we also establish that the Borel complexity of equivalence of properly ordered Bratteli diagrams is $\d$.