Open and clopen determinacy for proper class games, VCU MAMLS April 2017

This will be a talk for the Mid-Atlantic Mathematical Logic Seminar at Virginia Commonwealth University, a conference to be held April 1-2, 2017.

Richmond A line train bridge

Abstract. The principle of open determinacy for class games — two-player games of perfect information with plays of length $\omega$, where the moves are chosen from a possibly proper class, such as games on the ordinals — is not provable in Zermelo-Fraenkel set theory ZFC or Gödel-Bernays set theory GBC, if these theories are consistent, because provably in ZFC there is a definable open proper class game with no definable winning strategy. In fact, the principle of open determinacy and even merely clopen determinacy for class games implies Con(ZFC) and iterated instances Con(Con(ZFC)) and more, because it implies that there is a satisfaction class for first-order truth, and indeed a transfinite tower of truth predicates $\text{Tr}_\alpha$ for iterated truth-about-truth, relative to any class parameter. This is perhaps explained, in light of the Tarskian recursive definition of truth, by the more general fact that the principle of clopen determinacy is exactly equivalent over GBC to the principle of elementary transfinite recursion ETR over well-founded class relations. Meanwhile, the principle of open determinacy for class games is provable in the stronger theory GBC+$\Pi^1_1$-comprehension, a proper fragment of Kelley-Morse set theory KM. New work by Hachtman and Sato, respectively has clarified the separation of clopen and open determinacy for class games.

Lewis ChessmenThis is joint work with Victoria Gitman. See our article, Open determinacy for class games.

Slides

 

 

 

VCU MAMLS 2017

 

The theory of infinite games: how to play infinite chess and win, VCU Math Colloquium, November 2014

Releasing the hordesI shall speak at the Virginia Commonwealth University Math Colloquium on November 21, 2014.

Abstract. I shall give a general introduction to the theory of infinite games, using infinite chess—chess played on an infinite chessboard stretching without bound in every direction—as a central example. Since chess, when won, is always won at a finite stage of play, infinite chess is an example of what is known technically as an open game, and such games admit the theory of transfinite ordinal game values, which provide a measure in a position of the distance remaining to victory. I shall exhibit several interesting positions in infinite chess with very high transfinite ordinal game values. Some of these positions involve large numbers of pieces, and the talk will include animations of infinite chess in play, with hundreds of pieces (or infinitely many) making coordinated attacks on the board. Meanwhile, the precise ordinal value of the omega one of chess is an open mathematical question.

Slides | Transfinite game values in infinite chess | The mate-in-n problem of infinite chess is decidable