This was a talk at the Toronto Set Theory Seminar held April 22, 2011 at the Fields Institute in Toronto.
The theory ZFC-, consisting of the usual axioms of ZFC but with the powerset axiom removed, when axiomatized by extensionality, foundation, pairing, union, infinity, separation, replacement and the axiom of choice, is weaker than commonly supposed, and suffices to prove neither that a countable union of countable sets is countable, nor that $\omega_1$ is regular, nor that the Los theorem holds for ultrapowers, even for well-founded ultrapowers on a measurable cardinal, nor that the Gaifman theorem holds, that is, that every $\Sigma_1$-elementary cofinal embedding $j:M\to N$ between models of the theory is fully elementary, nor that $\Sigma_n$ sets are closed under bounded quantification. Nevertheless, these deficits of ZFC- are completely repaired by strengthening it to the theory obtained by using the collection axiom rather than replacement in the axiomatization above. These results extend prior work of Zarach. This is joint work with Victoria Gitman and Thomas Johnstone.