A universal finite set, CUNY Logic Workshop, November 2017

This will be a talk for the CUNY Logic Workshop, November 17, 2017, 2pm GC Room 6417. 

Abstract. I shall define a certain finite set in set theory $$\{x\mid\varphi(x)\}$$ and prove that it exhibits a universal extension property: it can be any desired particular finite set in the right set-theoretic universe and it can become successively any desired larger finite set in top-extensions of that universe. Specifically, ZFC proves the set is finite; the definition $\varphi$ has complexity $\Sigma_2$ and therefore any instance of it $\varphi(x)$ is locally verifiable inside any sufficient $V_\theta$; the set is empty in any transitive model and others; and if $\varphi$ defines the set $y$ in some countable model $M$ of ZFC and $y\subset z$ for some finite set $z$ in $M$, then there is a top-extension of $M$ to a model $N$ in which $\varphi$ defines the new set $z$. In particular, although there are models of set theory with maximal $\Sigma_2$ theories, nevertheless no model of set theory realizes a maximal $\Sigma_2$ theory with its natural-number parameters. Using the universal finite set, it follows that the validities of top-extensional set-theoretic potentialism, the modal principles valid in the Kripke model of all countable models of set theory, each accessing its top-extensions, are precisely the assertions of S4. Furthermore, if ZFC is consistent, then there are models of ZFC realizing the top-extensional maximality principle.

This is joint work with W. Hugh Woodin.

4 thoughts on “A universal finite set, CUNY Logic Workshop, November 2017

  1. This is a very interesting result. Though not in the same flavor, but maybe the following result of Gitik-shelah be also interesting. By a result of Hajnal, and independently Shelah, the set $\{ \lambda^\delta: 2^\delta < \lambda \}$ is always finite. By the work of Gitik-Shelah, given any natural number $n \geq 2$, this set can have exactly $n$ members in a suitable generic extension (assuming the existence of enough strong cardinals).

Leave a Reply