Bi-interpretation in set theory, Bristol, February 2020

This will be a talk for the Logic and Set Theory seminar at the University of Bristol, on 25 February, 2020.

Abstract: In contrast to the robust mutual interpretability phenomenon in set theory, Ali Enayat proved that bi-interpretation is absent: distinct theories extending ZF are never bi-interpretable and models of ZF are bi-interpretable only when they are isomorphic. Nevertheless, for natural weaker set theories, we prove, including Zermelo-Fraenkel set theory ZFC- without power set and Zermelo set theory Z, there are nontrivial instances of bi-interpretation. Specifically, there are well-founded models of ZFC- that are bi-interpretable, but not isomorphic—even $\langle H_{\omega_1},\in\rangle$ and $\langle H_{\omega_2},\in\rangle$ can be bi-interpretable—and there are distinct bi-interpretable theories extending ZFC-. Similarly, using a construction of Mathias, we prove that every model of ZF is bi-interpretable with a model of Zermelo set theory in which the replacement axiom fails. This is joint work with Alfredo Roque Freire.

Bi-interpretation in weak set theories

  • J. D. Hamkins and A. R. Freire, “Bi-interpretation in weak set theories,” Mathematics arXiv, 2020.  
    @ARTICLE{HamkinsFreire:Bi-interpretation-in-weak-set-theories,
    author = {Joel David Hamkins and Alfredo Roque Freire},
    title = {Bi-interpretation in weak set theories},
    journal = {Mathematics arXiv},
    year = {2020},
    volume = {},
    number = {},
    pages = {},
    month = {},
    note = {},
    abstract = {},
    keywords = {},
    source = {},
    doi = {},
    url = {http://jdh.hamkins.org/bi-interpretation-in-weak-set-theories},
    eprint = {2001.05262},
    archivePrefix = {arXiv},
    primaryClass = {math.LO},
    }

Must there be numbers we cannot describe or define? Pointwise definability and the Math Tea argument, Bristol, April 2012

This is a talk I plan to give to the set theory seminar at the University of Bristol on April 18, 2012.

An old argument, heard at a good math tea, proceeds: “there must be some real numbers that we can neither describe nor define, since there are uncountably many reals, but only countably many definitions.” Does it withstand scrutiny? In this talk, I will discuss the phenomenon of pointwise definable models of set theory, in which every object is definable without parameters. In addition to classical and folklore results on the existence of pointwise definable models of set theory, the main new theorem is that every countable model of ZFC and indeed of GBC has an extension to a model of set theory with the same ordinals, in which every set and class is definable without parameters. This is joint work with Jonas Reitz and David Linetsky, and builds on work of S. Simpson, R. Kossak, J. Schmerl, S. Friedman and A. Enayat.

slides | article

The automorphism tower problem for groups, Bristol 2012

Isaac Newton 20th Anniversary Lecture.  This is a talk I shall give at the University of Bristol, School of Mathematics, April 17, 2012, at the invitation of Philip Welch.

The automorphism tower of a group is obtained by computing its automorphism group, the automorphism group of that group, and so on, iterating transfinitely. The question, known as the automorphism tower problem, is whether the tower ever terminates, whether there is eventually a fixed point, a group that is isomorphic to its automorphism group by the natural map. Wielandt (1939) proved the classical result that the automorphism tower of any finite centerless group terminates in finitely many steps. This was successively generalized to larger and larger collections of groups until Thomas (1985) proved that every centerless group has a terminating automorphism tower.  Building on this, I proved (1997) that every group has a terminating automorphism tower.  After giving an account of this theorem, I will give an overview of my work with Simon Thomas, as well as newer work with Gunter Fuchs and work of Philipp Lücke, which reveal a set-theoretic essence for the automorphism tower of a group: the very same group can have wildly different towers in different models of set theory.

slides | list of my articles on automorphism towers | abstract at Bristol