Doubled, squared, cubed: a math game for kids or anyone

The number that must not be named

Doubled, squared, cubed is a great math game to play with kids or anyone interested in math.  It is a talking game, requiring no pieces or physical objects, played by a group of two or more people at almost any level of mathematical difficulty, while sitting, walking, boating or whatever.  We play it in our family (two kids, ages 7 and 11) when we are sitting around a table or when walking somewhere or when traveling by train.  I fondly recall playing the game with my brothers and sisters in my own childhood.

The game proceeds by first agreeing on an allowed number range.  For youngsters, perhaps one wants to allow the integers from 0 to 100, inclusive, but one will want to have negative numbers soon enough, and of course much more sophisticated play is possible. Eventually, one lessens or even abandons the restriction altogether. The first player offers a number, and each subsequent player in turn offers a mathematical operation, which is to be applied to the current number, which must not be mentioned explicitly.  The resulting number must be in the allowed number range.

The goal of the game is successfully to keep track of the number as it changes, and to offer an operation that makes sense with that number, while staying within the range of allowed numbers.  The point is to have some style, to offer an operation that proves that you know what the number is, without stating the number explicitly.  Perhaps your operation makes the new number a nice round number, or perhaps your operation can seldom be legally applied, and so applying it indicates that you know it is allowed to do so.  You must offer only operations that you yourself can compute, and which do not rely on hidden information (for example, “times the number of grapes I ate at breakfast” is not really permissible).

A losing move is one that doesn’t make sense or that results in a number outside the allowed range. In this case, the game can continue without that person, and the last person left wins.  It is not allowed to offer an operation that can always be applied, such as “times zero” or “minus itself“, or which can always be applied immediately after the previous operation, such as saying “times two” right after someone said, “cut in half”.  But in truth, the main point is to have some fun, rather than to win. Part of the game is surely simply to talk about new mathematical operations, and we usually take time out to discuss or explain any mathematical issue that may come up.  So this is an enjoyable way for the kids to encounter new mathematical ideas.

Let me simply illustrate a typical progression of the game, as it might be played in my family:

Hypatia: one

Barbara: doubled

Horatio: squared

Joel: cubed

Hypatia: plus 36

Barbara: square root

Horatio: divided by 5

Joel: times 50

Hypatia: minus 100

Barbara: times 6 billion

Horatio: plus 99

Joel: divided by 11

Hypatia: plus 1

Barbara: to the power of two

Horatio: minus 99

Joel: times itself 6 billion times

Hypatia: minus one

Barbara: divided by ten thousand

Horatio: plus 50

Joel: plus half of itself

Hypatia: plus 25

Barbara: minus 99

Horatio: cube root

Joel: next prime number above

Hypatia: ten’s complement

Barbara: second square number above

Horatio: reverse the digits

Joel: plus 3 more than six squared

Hypatia: minus 100

and so on!

As the kids get older, we gradually incorporate more sophisticated elements into the game, and take a little time out to explain to young Hypatia, for example, what it means to cube a number, to take a number to the power two, or what a prime number is.  I remember playing the game with my math-savvy siblings when I was a kid, and the running number was sometimes something like $\sqrt{29}$ or $2+3i$, and a correspondingly full range of numbers and operations. It is fine to let the youngest drop out after a while, and continue with the older kids with more sophisticated operations; the youngsters will rejoin in the next round.  In my childhood, we had a “challenge” rule, used when someone suspects that someone else doesn’t know the number: when challenged, the person should say the number; if incorrect, they are out, and otherwise the challenger is out.

Last weekend, I played the game with Horatio and Hypatia as we walked through Central Park to the Natural History Museum, and they conspired in whispering tones to mess me up, until finally I lost track of the number and they won…

More math for six-year-olds: Win at Nim!

The latest installment of math for six-year-olds

Win at Nim!

Win at Nim!
Fold up the bottom flap to prevent parents from learning the super-secret strategy.

This morning once again I went into my daughter’s first-grade classroom, full of inquisitive six-and-seven-year-old girls, and made a mathematical presentation on the game of Nim.   

                   Win at Nim!

The game of Nim, I explained, begins with one player setting up a number of stacks of blocks,while the opponent chooses whether to go first or second.  Taking turns, each player removes one or more blocks from a stack of their choosing. (It is fine to take a whole stack on your turn.) The player who takes the last block wins.

 

DSC00078

We demonstrated the game by playing a number of exhibition rounds, and then the girls divided into pairs to play each other and also me.  They were surprised that I was able to win against them every single time.  In explanation, I told them that this was because in the game of Nim, there is a super-secret mathematical strategy!  Did they want to learn?  Yes!  I took as my goal that they would all learn the Nim strategy, so that they could go home and confound their parents by beating them again and again at the game.

Since this was a first-grade class, we concentrated at first on games with stacks of heights 1, 2 and 3 only, a special case of the game which can still challenge adults, but for which six-year-olds can easily learn the winning strategy.

Two balanced stacks

After gaining some familiarity with the game by playing several rounds amongst each other, we gathered again for the secret strategy session. We began by thinking about the case of a game of Nim with only two stacks. They had noticed that sometimes when I played them, I had made copying moves; and indeed I had purposely said, “I copy you,” each time this had occurred.  The copying idea is surely appealing when there are only two stacks.  After some discussion, the girls realized that with just two stacks, if one played so as to equalize them, then one would always be able to copy the opponent’s move.  In particular, this copying strategy would ensure that one had a move to make whenever the opponent did, and so one would win the game.

DSC00076

A balanced position

In short order, the girls also realized that if one had any number of pairs of such balanced stacks—so that every stack had a partner—then the whole position was also winning (for one to give to the other player), since one could copy a move on any stack by making the corresponding move on the partner stack.  Thus, we deduced that if we could match up stacks of equal height in pairs, then we had a winning strategy, the strategy to copy any move on a partner stack.

In particular, this balancing idea provides a complete winning strategy in the case of Nim games for which all stacks have height one or two.  One should play so as to give a balanced position to one’s opponent, namely, a position with an even number of stacks of height one and an even number of stacks of height two.  Any unbalanced position can always be balanced in this way, and any move on a balanced position will unbalance it.

DSC00074

1+2+3 counts as balanced

To handle positions with stacks of height three, the super-secret trick is that one can balance a stack of height three either with another stack of height three, of course, but also with two stacks:  one of height one and one of height two.   Thus, one should regard a stack of height three as consisting of two sub-stacks, one of height one and one of height two, for the purposes of balancing. Thus, the Nim position 1+2+3 counts as balanced, since the 3 counts as 2+1, which balances the other stacks.  The 1+2+3 position has two stacks of height two and two of height one, when one regards the stack of height three as having a substack of height two and a substack of height one.

In this way, one arrives at a complete winning strategy for Nim positions involving stacks of height at most three, and furthermore, this is a strategy that can be mastered by first-graders. The strategy is to strive to balance the position.  If you always give your opponent a balanced position, then  you will win!  Faced with an unbalanced position, you can always find a balancing move, and any move on an balanced position will unbalance it.  If the game is just starting, and you are deciding whether to go first or second, you should determine whether it is balanced yet or not.  If it unbalanced, then you should go first and make the balancing move; if it is already balanced, then you should go second and adopt the copying strategy, in which you re-balance the position with each move.

More advanced players will want to consider Nim positions with taller stacks than three, and we talked about this a little in the classroom.  Some of the girls realized that the copying strategy and the idea of balanced positions still worked with taller stacks.  One can balanced stacks of height four against other stacks of height four, and so one, but the trick for these taller stacks is that one may balance 5 with 4+1; balance 6 with 4+2; and 7 with 4+2+1. Mathematicians will recognize here the powers of two.

To teach the strategy to children, it is a great opportunity to talk about the powers of two. Any child knows how to count 1, 2, 3, 4 and so on, and most can count by twos 2, 4, 6, 8, 10, …; by fives 5, 10, 15, 20, …; by tens, by threes; by sevens; and so on.  , The powers of two are the numbers 1, 2, 4, 8, 16, 32, 64, 128, and so on, doubling each time.  Climbing this exponential growth, children are often amazed at how quickly one reaches very large numbers:

One plus one is two;

two plus two is four;

four plus four is eight;

eight plus eight is sixteen;

sixteen plus sixteen is thirty-two;

thirty-two plus thirty-two is sixty-four;

sixty-four plus sixty-four is one hundred twenty-eight.

For Nim, we don’t in practice need such big powers of two, since one doesn’t usually encounter stacks of height eight or larger, and usually just 1s, 2s and 4s suffice. The relevant fact for us here is that every natural number is uniquely expressible as a sum of distinct powers of two, which of course is just another way of talking about binary representation of a number in base two.  We regard a Nim stack as consisting of its power-of-two substacks.  Thus, a stack of height 3 counts as 2+1; a stack of height 5 counts as 4+1; a stack of height 6 counts as 4+2; and a stack of height 7 counts as 4+2+1.

Ultimately, the winning general strategy for Nim is always to play so as to balance the position, where one regards every stack as being composed of its power-of-two sub-stacks, and a position counts as balanced when these stacks and sub-stacks can be matched up in pairs. This is a winning strategy, since every unbalanced position can be balanced, and any move on a balanced position will unbalance it.  To balance an unbalanced stack, play on any stack containing the largest size unbalanced power of two substack, and reduce it so as to balance the parity of all the stacks.  If one thinks about it, at bottom what we are doing is ensuring that if we represent the stack heights in their binary representation, then we should play so as to ensure that the position has a even number of one digits in each place.

The theory of infinite games, with examples, including infinite chess

This will be a talk on April 30, 2013 for a joint meeting of the Yeshiva University Mathematics Club and the  Yeshiva University Philosophy Club.  The event will take place in 5:45 pm in Furst Hall, on the corner of Amsterdam Ave. and 185th St.

Abstract. I will give a general introduction to the theory of infinite games, suitable for mathematicians and philosophers.  What does it mean to play an infinitely long game? What does it mean to have a winning strategy for such a game?  Is there any reason to think that every game should have a winning strategy for one player or another?  Could there be a game, such that neither player has a way to force a win?  Must every computable game have a computable winning strategy?  I will present several game paradoxes and example infinitary games, including an infinitary version of the game of Nim, and several examples from infinite chess.

NYlogic entry | Yeshiva University | Infinite chess | Video

 

The omega one of chess, CUNY, March, 2013

This is a talk for the New York Set Theory Seminar on March 1, 2013.

This talk will be based on my recent paper with C. D. A. Evans, Transfinite game values in infinite chess.

Infinite chess is chess played on an infinite chessboard.  Since checkmate, when it occurs, does so after finitely many moves, this is technically what is known as an open game, and is therefore subject to the theory of open games, including the theory of ordinal game values.  In this talk, I will give a general introduction to the theory of ordinal game values for ordinal games, before diving into several examples illustrating high transfinite game values in infinite chess.  The supremum of these values is the omega one of chess, denoted by $\omega_1^{\mathfrak{Ch}}$ in the context of finite positions and by $\omega_1^{\mathfrak{Ch}_{\hskip-1.5ex {\ \atop\sim}}}$ in the context of all positions, including those with infinitely many pieces. For lower bounds, we have specific positions with transfinite game values of $\omega$, $\omega^2$, $\omega^2\cdot k$ and $\omega^3$. By embedding trees into chess, we show that there is a computable infinite chess position that is a win for white if the players are required to play according to a deterministic computable strategy, but which is a draw without that restriction. Finally, we prove that every countable ordinal arises as the game value of a position in infinite three-dimensional chess, and consequently the omega one of infinite three-dimensional chess is as large as it can be, namely, true $\omega_1$.

Transfinite game values in infinite chess

  • C.~D.~A.~Evans and J. D. Hamkins, “Transfinite game values in infinite chess,” Integers, vol. 14, p. Paper No.~G2, 36, 2014.  
    @ARTICLE{EvansHamkins2014:TransfiniteGameValuesInInfiniteChess,
    AUTHOR = {C.~D.~A.~Evans and Joel David Hamkins},
    TITLE = {Transfinite game values in infinite chess},
    JOURNAL = {Integers},
    FJOURNAL = {Integers Electronic Journal of Combinatorial Number Theory},
    YEAR = {2014},
    volume = {14},
    number = {},
    pages = {Paper No.~G2, 36},
    month = {},
    note = {},
    eprint = {1302.4377},
    archivePrefix = {arXiv},
    primaryClass = {math.LO},
    url = {http://jdh.hamkins.org/game-values-in-infinite-chess},
    ISSN = {1553-1732},
    MRCLASS = {03Exx (91A46)},
    MRNUMBER = {3225916},
    abstract = {},
    keywords = {},
    source = {},
    }

In this article, C. D. A. Evans  and I investigate the transfinite game values arising in infinite chess, providing both upper and lower bounds on the supremum of these values—the omega one of chess—denoted by $\omega_1^{\mathfrak{Ch}}$ in the context of finite positions and by $\omega_1^{\mathfrak{Ch}_{\!\!\!\!\sim}}$ in the context of all positions, including those with infinitely many pieces. For lower bounds, we present specific positions with transfinite game values of $\omega$, $\omega^2$, $\omega^2\cdot k$ and $\omega^3$. By embedding trees into chess, we show that there is a computable infinite chess position that is a win for white if the players are required to play according to a deterministic computable strategy, but which is a draw without that restriction. Finally, we prove that every countable ordinal arises as the game value of a position in infinite three-dimensional chess, and consequently the omega one of infinite three-dimensional chess is as large as it can be, namely, true $\omega_1$.

The article is 38 pages, with 18 figures detailing many interesting positions of infinite chess. My co-author Cory Evans holds the chess title of U.S. National Master.

Wästlund’s MathOverflow question | My answer there

Let’s display here a few of the interesting positions.

First, a simple new position with value $\omega$.  The main line of play here calls for black to move his center rook up to arbitrary height, and then white slowly rolls the king into the rook for checkmate. For example, 1…Re10 2.Rf5+ Ke6 3.Qd5+ Ke7 4.Rf7+ Ke8 5.Qd7+ Ke9 6.Rf9#.  By playing the rook higher on the first move, black can force this main line of play have any desired finite length.  We have further variations with more black rooks and white king.

Value omega

Next, consider an infinite position with value $\omega^2$. The central black rook, currently attacked by a pawn, may be moved up by black arbitrarily high, where it will be captured by a white pawn, which opens a hole in the pawn column. White may systematically advance pawns below this hole in order eventually to free up the pieces at the bottom that release the mating material. But with each white pawn advance, black embarks on an arbitrarily long round of harassing checks on the white king.

Value omega squared

Here is a similar position with value $\omega^2$, which we call, “releasing the hordes”, since white aims ultimately to open the portcullis and release the queens into the mating chamber at right. The black rook ascends to arbitrary height, and white aims to advance pawns, but black embarks on arbitrarily long harassing check campaigns to delay each white pawn advance.

Releasing the hoards

Next, by iterating this idea, we produce a position with value $\omega^2\cdot 4$.  We have in effect a series of four such rook towers, where each one must be completed before the next is activated, using the “lock and key” concept explained in the paper.

Omega-squared-times-4

We can arrange the towers so that black may in effect choose how many rook towers come into play, and thus he can play to a position with value $\omega^2\cdot k$ for any desired $k$, making the position overall have value $\omega^3$.

Value omega cubed

Another interesting thing we noticed is that there is a computable position in infinite chess, such that in the category of computable play, it is a win for white—white has a computable strategy defeating any computable strategy of black—but in the category of arbitrary play, both players have a drawing strategy. Thus, our judgment of whether a position is a win or a draw depends on whether we insist that players play according to a deterministic computable procedure or not.

The basic idea for this is to have a computable tree with no computable infinite branch. When black plays computably, he will inevitably be trapped in a dead-end.

Infinite tree

In the paper, we conjecture that the omega one of chess is as large as it can possibly be, namely, the Church-Kleene ordinal $\omega_1^{CK}$ in the context of finite positions, and true $\omega_1$ in the context of all positions.

Our idea for proving this conjecture, unfortunately, does not quite fit into two-dimensional chess geometry, but we were able to make the idea work in infinite **three-dimensional** chess. In the last section of the article, we prove:

Theorem. Every countable ordinal arises as the game value of an infinite position of infinite three-dimensional chess. Thus, the omega one of infinite three dimensional chess is as large as it could possibly be, true $\omega_1$.

Here is a part of the position. Imagine the layers stacked atop each other, with $\alpha$ at the bottom and further layers below and above. The black king had entered at $\alpha$e4, was checked from below and has just moved to $\beta$e5. Pushing a pawn with check, white continues with 1.$\alpha$e4+ K$\gamma$e6 2.$\beta$e5+ K$\delta$e7 3.$\gamma$e6+ K$\epsilon$e8 4.$\delta$e7+, forcing black to climb the stairs (the pawn advance 1.$\alpha$e4+ was protected by a corresponding pawn below, since black had just been checked at $\alpha$e4).

Climbing the stairs

The overall argument works in higher dimensional chess, as well as three-dimensional chess that has only finite extent in the third dimension $\mathbb{Z}\times\mathbb{Z}\times k$, for $k$ above 25 or so.

Infinite chess: the mate-in-n problem is decidable and the omega-one of chess, Cambridge, March 2012

I have just taken up a visiting fellow position at the Isaac Newton Institute for mathematical sciences in Cambridge, UK, where I am participating in the program Syntax and Semantics:  the legacy of Alan Turing.   I was asked to give a brief introduction to some of my current work, and I chose to speak about infinite chess.

Infinite chess is chess played on an infinite edgeless chessboard. The familiar chess pieces move about according to their usual chess rules, and each player strives to place the opposing king into checkmate. The mate-in-$n$ problem of infinite chess is the problem of determining whether a designated player can force a win from a given finite position in at most $n$ moves. A naive formulation of this problem leads to assertions of high arithmetic complexity with $2n$ alternating quantifiers—there is a move for white, such that for every black reply, there is a countermove for white, and so on. In such a formulation, the problem does not appear to be decidable; and one cannot expect to search an infinitely branching game tree even to finite depth.

Nevertheless, in joint work with Dan Brumleve and Philipp Schlicht, confirming a conjecture of myself and C. D. A. Evans, we establish that the mate-in-$n$ problem of infinite chess is computably decidable, uniformly in the position and in $n$. Furthermore, there is a computable strategy for optimal play from such mate-in-$n$ positions. The proof proceeds by showing that the mate-in-$n$ problem is expressible in what we call the first-order structure of chess, which we prove (in the relevant fragment) is an automatic structure, whose theory is therefore decidable. Unfortunately, this resolution of the mate-in-n problem does not appear to settle the decidability of the more general winning-position problem, the problem of determining whether a designated player has a winning strategy from a given position, since a position may admit a winning strategy without any bound on the number of moves required. This issue is connected with transfinite game values in infinite chess, and the exact value of the omega one of chess $\omega_1^{\rm chess}$ is not known.  I will also discuss recent joint work with C. D. A. Evans and W. Hugh Woodin showing that the omega one of infinite positions in three-dimensional infinite chess is true $\omega_1$: every countable ordinal is realized as the game value of such a position.

 

article | slides | streaming videoprogram of abstracts

The mate-in-n problem of infinite chess is decidable

  • D. Brumleve, J. D. Hamkins, and P. Schlicht, “The Mate-in-$n$ Problem of Infinite Chess Is Decidable,” in How the World Computes, S. Cooper, A. Dawar, and B. Löwe, Eds., Springer Berlin Heidelberg, 2012, vol. 7318, pp. 78-88.  
    @incollection{BrumleveHamkinsSchlicht2012:TheMateInNProblemOfInfiniteChessIsDecidable,
    year= {2012}, isbn= {978-3-642-30869-7}, booktitle= {How the World Computes},
    volume= {7318}, series= {Lecture Notes in Computer Science}, editor= {Cooper,
    S.~Barry and Dawar, Anuj and L{\"o}we, Benedikt}, doi=
    {10.1007/978-3-642-30870-3_9}, title= {The Mate-in-$n$ Problem of Infinite
    Chess Is Decidable}, url= {},
    publisher= {Springer Berlin Heidelberg}, author= {Brumleve, Dan and Hamkins,
    Joel David and Schlicht, Philipp}, pages= {78-88},
    eprint = {1201.5597},
    archivePrefix = {arXiv},
    primaryClass = {math.LO},
    }

Infinite chess is chess played on an infinite edgeless chessboard. The familiar chess pieces move about according to their usual chess rules, and each player strives to place the opposing king into checkmate. The mate-in-$n$ problem of infinite chess is the problem of determining whether a designated player can force a win from a given finite position in at most $n$ moves. A naive formulation of this problem leads to assertions of high arithmetic complexity with $2n$ alternating quantifiers—*there is a move for white, such that for every black reply, there is a countermove for white*, and so on. In such a formulation, the problem does not appear to be decidable; and one cannot expect to search an infinitely branching game tree even to finite depth.

Nevertheless, the main theorem of this article, confirming a conjecture of the first author and C. D. A. Evans, establishes that the mate-in-$n$ problem of infinite chess is computably decidable, uniformly in the position and in $n$. Furthermore, there is a computable strategy for optimal play from such mate-in-$n$ positions. The proof proceeds by showing that the mate-in-$n$ problem is expressible in what we call the first-order structure of chess, which we prove (in the relevant fragment) is an automatic structure, whose theory is therefore decidable. Unfortunately, this resolution of the mate-in-$n$ problem does not appear to settle the decidability of the more general winning-position problem, the problem of determining whether a designated player has a winning strategy from a given position, since a position may admit a winning strategy without any bound on the number of moves required. This issue is connected with transfinite game values in infinite chess, and the exact value of the omega one of chess $\omega_1^{\frak{Ch}}$ is not known.

Richard Stanley’s question on mathoverflow: Decidability of chess on infinite board?