Strategic thinking in infinite games, CosmoCaixa Science Museum, Barcelona, March 2023

I am deeply honored to be invited by la Caixa Foundation to give a talk in “The Greats of Science” talk series, to be held 16 March 2023 at the CosmoCaixa Science Museum in Barcelona. This talk series aspires to host “prestigious figures who have contributed towards admirable milestones, studies or discoveries,” who will bring the science to a general audience, aiming to “give viewers the chance to explore the most relevant parts of contemporary sicence through the top scientists of the moment.” Previous speakers include Jane Goodall and nearly a dozen Nobel Prize winners since 2018.

I hope to rise to those high expectations!

My topic will be: Strategic thinking in infinite games.

Have you time for an infinite game? Many familiar finite games admit natural infinitary analogues, infinite games that may captivate and challenge us with intriguing patterns and sublime complexity. Shall we have a game of infinite chess? Or how about infinite draughts, infinite Hex, infinite Wordle, or infinite Sudoku? In the Chocolatier’s game, the Chocolatier serves up an infinite stream of delicious morsels, while the Glutton aims to eat every one. These games and others illustrate the often subtle strategic aspects of infinite games, and sometimes their downright logical peculiarity. Does every infinite game admit of a winning strategy? Must optimal play be in principle computable? Let us discover the fascinating nature of infinitary strategic thinking.

The theory builds upon the classical finitary result of Zermelo (1913), the fundamental theorem of finite games, which shows that in every finite two-player game of perfect information, one of the players must have a winning strategy or both players have draw-or-better strategies. This result extends to certain infinitary games by means of the ordinal game-value analysis, which assigns transfinite ordinal values $\alpha$ to positions in a game, generalizing the familiar mate-in-$n$ idea of chess to the infinite. Current work realizes high transfinite game values in infinite chess, infinite draughts (checkers), infinite Go, and many other infinite games. The highest-known game value arising in infinite chess is the infinite ordinal $\omega^4$, and every countable ordinal arises in infinite draughts, the optimal result. Games exhibiting high transfinite ordinal game values have a surreal absurd character of play. The winning player will definitely win in finitely many moves, but the doomed losing player controls the process with absurdly long deeply nested patterns of forcing moves that must be answered, as though counting down from the infinite game value—when 0 is reached, the game is over.

Infinite Games, Frivolities of the Gods, Logic at Large Lecture, May 2022

The Dutch Association for Logic and Philosophy of the Exact Sciences (VvL) has organized a major annual public online lecture series called LOGIC AT LARGE, where “well-known logicians give public audience talks to a wide audience,” and I am truly honored to have been invited to give this year’s lecture. This will be an online event, the second of the series, scheduled for May 31, 2022 (note change in date!), and further access details will be posted when they become available. Free registration can be made on the VvL Logic at Large web page.

Abstract. Many familiar finite games admit natural infinitary analogues, which often highlight intriguing issues in infinite game theory. Shall we have a game of infinite chess? Or how about infinite draughts, infinite Hex, infinite Go, infinite Wordle, or infinite Sudoku? Let me introduce these games and use them to illustrate various fascinating concepts in the theory of infinite games.

Come enjoy the lecture, and stay for the online socializing event afterwards. Hope to see you there!

Infinite Wordle and the Mastermind numbers

  • J. D. Hamkins, “Infinite Wordle and the mastermind numbers,” Mathematics arXiv, 2022.
    [Bibtex]
    @ARTICLE{Hamkins:Infinite-Wordle-and-the-mastermind-numbers,
    author = {Joel David Hamkins},
    title = {Infinite Wordle and the mastermind numbers},
    journal = {Mathematics arXiv},
    year = {2022},
    volume = {},
    number = {},
    pages = {},
    month = {},
    note = {Under review},
    abstract = {},
    keywords = {under-review},
    source = {},
    doi = {},
    eprint = {2203.06804},
    archivePrefix = {arXiv},
    primaryClass = {math.LO},
    url = {http://jdh.hamkins.org/infinite-wordle-mastermind},
    }

Download article at arXiv:2203.06804

Abstract. I consider the natural infinitary variations of the games Wordle and Mastermind, as well as their game-theoretic variations Absurdle and Madstermind, considering these games with infinitely long words and infinite color sequences and allowing transfinite game play. For each game, a secret codeword is hidden, which the codebreaker attempts to discover by making a series of guesses and receiving feedback as to their accuracy. In Wordle with words of any size from a finite alphabet of $n$ letters, including infinite words or even uncountable words, the codebreaker can nevertheless always win in $n$ steps. Meanwhile, the mastermind number 𝕞, defined as the smallest winning set of guesses in infinite Mastermind for sequences of length $\omega$ over a countable set of colors without duplication, is uncountable, but the exact value turns out to be independent of ZFC, for it is provably equal to the eventually different number $\frak{d}({\neq^*})$, which is the same as the covering number of the meager ideal $\text{cov}(\mathcal{M})$. I thus place all the various mastermind numbers, defined for the natural variations of the game, into the hierarchy of cardinal characteristics of the continuum.