Infinite-Games Workshop

Welcome to the Infinite-Games Workshop, beginning Autumn 2023. The past ten years has seen an explosion in the study of infinite games, for researchers are now investigating diverse infinite games, including infinite chess, infinite draughts, infinite Hex, infinite Othello, infinite Go, indeed, we seem to have research projects involving infinitary analogues of all our familiar finite games. It is an emerging research area with many new exciting results.

This autumn, we shall set the workshop off with talks on several exciting new results in infinite chess, results which settle what had been some of the big open questions in the topic, including the question of the omega one of chess—the supremum of the ordinal game values that arise—as well as a finite position with game value $\omega^2$.

The workshop talks will be run at a high level of sophistication, aimed for the most part at serious researchers currently working in this emerging area. Mathematicians, computer scientists, infinitary game theorists, all serious researchers are welcome.

All talks will take place on Zoom at meeting 968 0186 3645 (password = latex code for the first uncountable ordinal). Contact dleonessi@gc.cuny.edu for further information.

Talks will be 90 minutes, with a workshop style welcoming questions. All talks will be recorded and placed on our YouTube channel. Talks will generally be held on Thursdays at 11:00 am New York time.

Add our calendar: Infinite-Games Workshop Calendar

The workshop is being organized by myself with the assistance of Davide Leonessi.

FAll 2023 Talks


21 September 2023 11am ET

Infinite draughts: a solved open game

Davide Leonessi, The Graduate Center of the City University of New York

Davide Leonessi, CUNY GC

https://youtu.be/KZMDteLKFRI?si=_ZkSQmSlsIOmZJAx

Abstract: In this talk I will introduce open infinite games, and then define a natural generalization of draughts (checkers) to the infinite planar board. Infinite draughts is an open game, giving rise to the game value phenomenon and expressing it fully—the omega one of draughts is at least true $\omega_1$ and every possible defensive strategy of the losing player can be implemented. 


5 October 2023 11:00 am ET

Introduction to infinite games

Joel David Hamkins, Professor of Logic, University of Notre Dame

Abstract: I shall give a general introduction to the subject and theory of infinite games, drawing upon diverse examples of infinitary games, but including also infinite chess, infinite Hex, infinite draughts, and others.


2 November 2023 11:00 am ET

Complexity of the winning condition of infinite Hex

Ilkka Törmä, University of Turku, Finland

Abstract: Hex is a two-player game where the goal is to form a contiguous path of tokens from one side of a finite rectangular board to the opposite side. It is a famous classical result that Hex admits no draws: a completely filled board is a win for exactly one player. Infinite Hex is a variant introduced recently by Hamkins and Leonessi. It is played on the infinite two-dimensional grid $\mathbb{Z}^2$, and a player wins by forming a certain kind of two-way infinite contiguous path. Hamkins and Leonessi left open the complexity of the winning condition, in particular whether it is Borel. We present a proof that it is in fact arithmetic.


16 NOvember 2023 11:00 am ET

A finite position in infinite chess with game value $\omega^2+k$

Andreas Tsevas, Physics, Ludwig Maximalians Universität München

Abstract: I present a position in infinite chess with finitely many pieces and a game value of $\omega^2+k$ for $k\in\mathbb N$, thereby improving the previously known best result in the finite case of $\omega\cdot n$ for arbitrary $n \in\mathbb N$. This is achieved by exercising control over the movement of a white queen along two rows on the chessboard via precise tempo manipulation and utilization of the uniquely crucial ability of the queen to interlace horizontal threats with diagonal moves.


7 December 2023 11:00 am ET

All Countable Ordinals Arise as Game Values in Infinite Chess

Matthew Bolan, University of Toronto

Matthew Bolan, Infinite-Games Workshop

Abstract: For every countable ordinal $\alpha$, we show that there exists a position in infinite chess with infinitely many pieces having game value $\alpha$.

Infinite games—strategies, logic, theory, and computation, Northeastern, June 2023

This will be an online Zoom talk for the Boston Computaton Club, a graduate seminar in computer science at Northeastern University, 16 June 12pm EST (note change in date/time). Contact the organizers for the Zoom link.

Abstract: Many familiar finite games admit natural infinitary analogues, which may captivate and challenge us with sublime complexity. Shall we have a game of infinite chess? Or how about infinite draughts, infinite Hex, infinite Wordle, or infinite Sudoku? In the Chocolatier’s game, the Chocolatier serves up an infinite stream of delicious morsels, while the Glutton aims to eat every one. These games and others illustrate the often subtle strategic aspects of infinite games, and sometimes their downright logical peculiarity. Does every infinite game admit of a winning strategy? Must optimal play be in principle computable? Let us discover the fascinating nature of infinitary strategic thinking.

Strategic thinking in infinite games, CosmoCaixa Science Museum, Barcelona, March 2023

I am deeply honored to be invited by la Caixa Foundation to give a talk in “The Greats of Science” talk series, to be held 16 March 2023 at the CosmoCaixa Science Museum in Barcelona. This talk series aspires to host “prestigious figures who have contributed towards admirable milestones, studies or discoveries,” who will bring the science to a general audience, aiming to “give viewers the chance to explore the most relevant parts of contemporary sicence through the top scientists of the moment.” Previous speakers include Jane Goodall and nearly a dozen Nobel Prize winners since 2018.

Cosmo Caixa announcement

I hope to rise to those high expectations!

My topic will be: Strategic thinking in infinite games.

Have you time for an infinite game? Many familiar finite games admit natural infinitary analogues, infinite games that may captivate and challenge us with intriguing patterns and sublime complexity. Shall we have a game of infinite chess? Or how about infinite draughts, infinite Hex, infinite Wordle, or infinite Sudoku? In the Chocolatier’s game, the Chocolatier serves up an infinite stream of delicious morsels, while the Glutton aims to eat every one. These games and others illustrate the often subtle strategic aspects of infinite games, and sometimes their downright logical peculiarity. Does every infinite game admit of a winning strategy? Must optimal play be in principle computable? Let us discover the fascinating nature of infinitary strategic thinking.

The theory builds upon the classical finitary result of Zermelo (1913), the fundamental theorem of finite games, which shows that in every finite two-player game of perfect information, one of the players must have a winning strategy or both players have draw-or-better strategies. This result extends to certain infinitary games by means of the ordinal game-value analysis, which assigns transfinite ordinal values $\alpha$ to positions in a game, generalizing the familiar mate-in-$n$ idea of chess to the infinite. Current work realizes high transfinite game values in infinite chess, infinite draughts (checkers), infinite Go, and many other infinite games. The highest-known game value arising in infinite chess is the infinite ordinal $\omega^4$, and every countable ordinal arises in infinite draughts, the optimal result. Games exhibiting high transfinite ordinal game values have a surreal absurd character of play. The winning player will definitely win in finitely many moves, but the doomed losing player controls the process with absurdly long deeply nested patterns of forcing moves that must be answered, as though counting down from the infinite game value—when 0 is reached, the game is over.

Infinite Games, Frivolities of the Gods, Logic at Large Lecture, May 2022

The Dutch Association for Logic and Philosophy of the Exact Sciences (VvL) has organized a major annual public online lecture series called LOGIC AT LARGE, where “well-known logicians give public audience talks to a wide audience,” and I am truly honored to have been invited to give this year’s lecture. This will be an online event, the second of the series, scheduled for May 31, 2022 (note change in date!), and further access details will be posted when they become available. Free registration can be made on the VvL Logic at Large web page.

Abstract. Many familiar finite games admit natural infinitary analogues, which often highlight intriguing issues in infinite game theory. Shall we have a game of infinite chess? Or how about infinite draughts, infinite Hex, infinite Go, infinite Wordle, or infinite Sudoku? Let me introduce these games and use them to illustrate various fascinating concepts in the theory of infinite games.

Come enjoy the lecture, and stay for the online socializing event afterwards. Hope to see you there!

Infinite draughts and the logic of infinitary games, Oslo, November 2021

This will be a talk 11 November 2021 for the Oslo Seminar in Mathematical Logic, meeting online via Zoom at 10:15am CET (9:15am GMT) at Zoom: 671 7500 0197

Abstract. I shall give an introduction to the logic of infinite games, including the theory of transfinite game values, using the case of infinite draughts as a principal illustrative instance. Infinite draughts, also known as infinite checkers, is played like the finite game, but on an infinite checkerboard stretching without end in all four directions. In recent joint work with Davide Leonessi, we proved that every countable ordinal arises as the game value of a position in infinite draughts. Thus, there are positions from which Red has a winning strategy enabling her to win always in finitely many moves, but the length of play can be completely controlled by Black in a manner as though counting down from a given countable ordinal. This result is optimal for games having countably many options at each move—in short, the omega one of infinite draughts is true omega one.

Transfinite game values in infinite draughts

A joint paper with Davide Leonessi, in which we prove that every countable ordinal arises as the game value of a position in infinite draughts, and this result is optimal for games having countably many options at each move. In short, the omega one of infinite draughts is true omega one.

[bibtex key=”HamkinsLeonessi:Transfinite-game-values-in-infinite-draughts”]

Download the paper at arXiv:2111.02053

Abstract. Infinite draughts, or checkers, is played just like the finite game, but on an infinite checkerboard extending without bound in all four directions. We prove that every countable ordinal arises as the game value of a position in infinite draughts. Thus, there are positions from which Red has a winning strategy enabling her to win always in finitely many moves, but the length of play can be completely controlled by Black in a manner as though counting down from a given countable ordinal.

Davide Leonessi, MSc MFoCS, Oxford, September 2021

Mr. Davide Leonessi successfully defended his dissertation for the Masters of Science degree in Mathematics and Foundations of Computer Science, entitled “Transfinite game values in infinite games,” on 15 September 2021. Davide earned a distinction for his thesis, an outstanding result.

Davide Leonessi | Google scholar | Dissertation | arXiv

Abstract. The object of this study are countably infinite games with perfect information that allow players to choose among arbitrarily many moves in a turn; in particular, we focus on the generalisations of the finite board games of Hex and Draughts.

In Chapter 1 we develop the theory of transfinite ordinal game values for open infinite games following [Evans-Hamkins 2014], and we focus on the properties of the omega one, that is the supremum of the possible game values, of classes of open games; we moreover design the class of climbing-through-$T$ games as a tool to study the omega one of given game classes.

The original contributions of this research are presented in the following two chapters.

In Chapter 2 we prove classical results about finite Hex and present Infinite Hex, a well-defined infinite generalisation of Hex.

We then introduce the class of stone-placing games, which captures the key features of Infinite Hex and further generalises the class of positional games already studied in the literature within the finite setting of Combinatorial Game Theory.

The main result of this research is the characterization of open stone-placing games in terms of the property of essential locality, which leads to the conclusion that the omega one of any class of open stone-placing games is at most $\omega$. In particular, we obtain that the class of open games of Infinite Hex has the smallest infinite omega one, that is $\omega_1^{\rm Hex}=\omega$.

In Chapter 3 we show a dual result; we define the class of games of Infinite Draughts and explicitly construct open games of arbitrarily high game value with the tools of Chapter 1, concluding that the omega one of the class of open games of Infinite Draughts is as high as possible, that is $\omega_1^{\rm Draughts}=\omega_1$.

The full dissertation is available: