Set theory with abundant urelements, STUK 10, Oxford, June 2023

This will be a talk for the Set Theory in the UK, STUK 10, held in Oxford 14 June 2023, organized by my students Clara List, Emma Palmer, and Wojciech Wołoszyn.

Abstract. I shall speak on the surprising strength of the second-order reflection principle in the context of set theory with abundant urelements. The theory GBcU with the abundant urelement axiom and second-order reflection is bi-interpretable with a strengthening of KM with a supercompact cardinal. This is joint work with Bokai Yao.

Bi-interpretation in set theory, Oberwolfach Set Theory Conference, January 2022

This was a talk for the 2022 Set Theory Conference at Oberwolfach, which was a hybrid of in-person talks and online talks on account of the Covid pandemic. I gave my talk online 10 January 2022.

Abstract: Set theory exhibits a truly robust mutual interpretability phenomenon: in any model of one set theory we can define models of diverse other set theories and vice versa. In any model of ZFC, we can define models of ZFC + GCH and also of ZFC + ¬CH and so on in hundreds of cases. And yet, it turns out, in no instance do these mutual interpretations rise to the level of bi-interpretation. Ali Enayat proved that distinct theories extending ZF are never bi-interpretable, and models of ZF are bi-interpretable only when they are isomorphic. So there is no nontrivial bi-interpretation phenomenon in set theory at the level of ZF or above.  Nevertheless, for natural weaker set theories, we prove, including ZFC- without power set and Zermelo set theory Z, there are nontrivial instances of bi-interpretation. Specifically, there are well-founded models of ZFC- that are bi-interpretable, but not isomorphic—even $\langle H_{\omega_1},\in\rangle$ and $\langle H_{\omega_2},\in\rangle$ can be bi-interpretable—and there are distinct bi-interpretable theories extending ZFC-. Similarly, using a construction of Mathias, we prove that every model of ZF is bi-interpretable with a model of Zermelo set theory in which the replacement axiom fails. This is joint work with Alfredo Roque Freire.

Bi-interpretation of weak set theories, Oxford Set Theory Seminar, May 2020

This will be a talk for the newly founded Oxford Set Theory Seminar, May 20, 2020. Contact Sam Adam-Day (me@samadamday.com) for the Zoom access codes. 

Abstract: Set theory exhibits a truly robust mutual interpretability phenomenon: in any model of one set theory we can define models of diverse other set theories and vice versa. In any model of ZFC, we can define models of ZFC + GCH and also of ZFC + ¬CH and so on in hundreds of cases. And yet, it turns out, in no instance do these mutual interpretations rise to the level of bi-interpretation. Ali Enayat proved that distinct theories extending ZF are never bi-interpretable, and models of ZF are bi-interpretable only when they are isomorphic. So there is no nontrivial bi-interpretation phenomenon in set theory at the level of ZF or above.  Nevertheless, for natural weaker set theories, we prove, including ZFC- without power set and Zermelo set theory Z, there are nontrivial instances of bi-interpretation. Specifically, there are well-founded models of ZFC- that are bi-interpretable, but not isomorphic—even $\langle H_{\omega_1},\in\rangle$ and $\langle H_{\omega_2},\in\rangle$ can be bi-interpretable—and there are distinct bi-interpretable theories extending ZFC-. Similarly, using a construction of Mathias, we prove that every model of ZF is bi-interpretable with a model of Zermelo set theory in which the replacement axiom fails. This is joint work with Alfredo Roque Freire.

This is a version of the talk that I had planned to give at the 2020 Set Theory meeting Oberwolfach, before that meeting was canceled on account of the Covid-19 situation.

Slides

Bi-interpretation in weak set theories

  • [bibtex key=”FreireHamkins:Bi-interpretation-in-weak-set-theories”]

The real numbers are not interpretable in the complex field

Consider the real numbers $\newcommand\R{\mathbb{R}}\R$ and the complex numbers $\newcommand\C{\mathbb{C}}\C$ and the question of whether these structures are interpretable in one another as fields.

What does it mean to interpret one mathematical structure in another? It means to provide a definable copy of the first structure in the second, by providing a definable domain of $k$-tuples (not necessarily just a domain of points) and definable interpretations of the atomic operations and relations, as well as a definable equivalence relation, a congruence with respect to the operations and relations, such that the first structure is isomorphic to the quotient of this definable structure by that equivalent relation. All these definitions should be expressible in the language of the host structure.

One may proceed recursively to translate any assertion in the language of the interpreted structure into the language of the host structure, thereby enabling a complete discussion of the first structure purely in the language of the second.

For an example, we can define a copy of the integer ring $\langle\mathbb{Z},+,\cdot\rangle$ inside the semi-ring of natural numbers $\langle\mathbb{N},+,\cdot\rangle$ by considering every integer as the equivalence class of a pair of natural numbers $(n,m)$ under the same-difference relation, by which $$(n,m)\equiv(u,v)\iff n-m=u-v\iff n+v=u+m.$$ Integer addition and multiplication can be defined on these pairs, well-defined with respect to same difference, and so we have interpreted the integers in the natural numbers.

Similarly, the rational field $\newcommand\Q{\mathbb{Q}}\Q$ can be interpreted in the integers as the quotient field, whose elements can be thought of as integer pairs $(p,q)$ written more conveniently as fractions $\frac pq$, where $q\neq 0$, considered under the same-ratio relation
$$\frac pq\equiv\frac rs\qquad\iff\qquad ps=rq.$$
The field structure is now easy to define on these pairs by the familiar fractional arithmetic, which is well-defined with respect to that equivalence. Thus, we have provided a definable copy of the rational numbers inside the integers, an interpretation of $\Q$ in $\newcommand\Z{\mathbb{Z}}\Z$.

The complex field $\C$ is of course interpretable in the real field $\R$ by considering the complex number $a+bi$ as represented by the real number pair $(a,b)$, and defining the operations on these pairs in a way that obeys the expected complex arithmetic. $$(a,b)+(c,d) =(a+c,b+d)$$ $$(a,b)\cdot(c,d)=(ac-bd,ad+bc)$$ Thus, we interpret the complex number field $\C$ inside the real field $\R$.

Question. What about an interpretation in the converse direction? Can we interpret $\R$ in $\C$?

Although of course the real numbers can be viewed as a subfield of the complex numbers $$\R\subset\C,$$this by itself doesn’t constitute an interpretation, unless the submodel is definable. And in fact, $\R$ is not a definable subset of $\C$. There is no purely field-theoretic property $\varphi(x)$, expressible in the language of fields, that holds in $\C$ of all and only the real numbers $x$. But more: not only is $\R$ not definable in $\C$ as a subfield, we cannot even define a copy of $\R$ in $\C$ in the language of fields. We cannot interpret $\R$ in $\C$ in the language of fields.

Theorem. As fields, the real numbers $\R$ are not interpretable in the complex numbers $\C$.

We can of course interpret the real numbers $\R$ in a structure slightly expanding $\C$ beyond its field structure. For example, if we consider not merely $\langle\C,+,\cdot\rangle$ but add the conjugation operation $\langle\C,+,\cdot,z\mapsto\bar z\rangle$, then we can identify the reals as the fixed-points of conjugation $z=\bar z$. Or if we add the real-part or imaginary-part operators, making the coordinate structure of the complex plane available, then we can of course define the real numbers in $\C$ as those complex numbers with no imaginary part. The point of the theorem is that in the pure language of fields, we cannot define the real subfield nor can we even define a copy of the real numbers in $\C$ as any kind of definable quotient structure.

The theorem is well-known to model theorists, a standard observation, and model theorists often like to prove it using some sophisticated methods, such as stability theory. The main issue from that point of view is that the order in the real numbers is definable from the real field structure, but the theory of algebraically closed fields is too stable to allow it to define an order like that.

But I would like to give a comparatively elementary proof of the theorem, which doesn’t require knowledge of stability theory. After a conversation this past weekend with Jonathan Pila, Boris Zilber and Alex Wilkie over lunch and coffee breaks at the Robin Gandy conference, here is such an elementary proof, based only on knowledge concerning the enormous number of automorphisms of $\C$, a consequence of the categoricity of the complex field, which itself follows from the fact that algebraically closed fields of a given characteristic are determined by their transcedence degree over their prime subfield. It follows that any two transcendental elements of $\C$ are automorphic images of one another, and indeed, for any element $z\in\C$ any two complex numbers transcendental over $\Q(z)$ are automorphic in $\C$ by an automorphism fixing $z$.

Proof of the theorem. Suppose that we could interpret the real field $\R$ inside the complex field $\C$. So we would define a domain of $k$-tuples $R\subseteq\C^k$ with an equivalence relation $\simeq$ on it, and operations of addition and multiplication on the equivalence classes, such that the real field was isomorphic to the resulting quotient structure $R/\simeq$. There is absolutely no requirement that this structure is a submodel of $\C$ in any sense, although that would of course be allowed if possible. The $+$ and $\times$ of the definable copy of $\R$ in $\C$ might be totally strange new operations defined on those equivalence classes. The definitions altogether may involve finitely many parameters $\vec p=(p_1,\ldots,p_n)$, which we now fix.

As we mentioned, the complex number field $\C$ has an enormous number of automorphisms, and indeed, any two $k$-tuples $\vec x$ and $\vec y$ that exhibit the same algebraic equations over $\Q(\vec p)$ will be automorphic by an automorphism fixing $\vec p$. In particular, this means that there are only countably many isomorphism orbits of the $k$-tuples of $\C$. Since there are uncountably many real numbers, this means that there must be two $\simeq$-inequivalent $k$-tuples in the domain $R$ that are automorphic images in $\C$, by an automorphism $\pi:\C\to\C$ fixing the parameters $\vec p$. Since $\pi$ fixes the parameters of the definition, it will take $R$ to $R$ and it will respect the equivalence relation and the definition of the addition and multiplication on $R/\simeq$. Therefore, $\pi$ will induce an automorphism of the real field $\R$, which will be nontrivial precisely because $\pi$ took an element of one $\simeq$-equivalence class to another.

The proof is now completed by the observation that the real field $\langle\R,+,\cdot\rangle$ is rigid; it has no nontrivial automorphisms. This is because the order is definable (the positive numbers are precisely the nonzero squares) and the individual rational numbers must be fixed by any automorphism and then every real number is determined by its cut in the rationals. So there can be no nontrivial automorphism of $\R$, and we have a contradiction. So $\R$ is not interpretable in $\C$. $\Box$

Bi-interpretation of weak set theories, Oberwolfach, April 2020

This will be a talk for the workshop in Set Theory at the Mathematisches Forschungsinstitute Oberwolfach, April 5-11, 2020. 

Note: the conference has been cancelled due to concerns over the Coronavirus-19. (Meanwhile, I have given the talk for the Oxford Set Theory Seminar — see below.)

Abstract: Set theory exhibits a truly robust mutual interpretability phenomenon: in any model of one set theory we can define models of diverse other set theories and vice versa. In any model of ZFC, we can define models of ZFC + GCH and also of ZFC + ¬CH and so on in hundreds of cases. And yet, it turns out, in no instance do these mutual interpretations rise to the level of bi-interpretation. Ali Enayat proved that distinct theories extending ZF are never bi-interpretable, and models of ZF are bi-interpretable only when they are isomorphic. So there is no nontrivial bi-interpretation phenomenon in set theory at the level of ZF or above.  Nevertheless, for natural weaker set theories, we prove, including ZFC- without power set and Zermelo set theory Z, there are nontrivial instances of bi-interpretation. Specifically, there are well-founded models of ZFC- that are bi-interpretable, but not isomorphic—even $\langle H_{\omega_1},\in\rangle$ and $\langle H_{\omega_2},\in\rangle$ can be bi-interpretable—and there are distinct bi-interpretable theories extending ZFC-. Similarly, using a construction of Mathias, we prove that every model of ZF is bi-interpretable with a model of Zermelo set theory in which the replacement axiom fails. This is joint work with Alfredo Roque Freire.

Since the Oberwolfach meeting had been canceled, I gave the talk for the Oxford Set Theory Seminar on 20 May 2020.

Bi-interpretation in weak set theories

  • [bibtex key=”FreireHamkins:Bi-interpretation-in-weak-set-theories”]

Bi-interpretation in set theory, Bristol, February 2020

This will be a talk for the Logic and Set Theory seminar at the University of Bristol, on 25 February, 2020.

Abstract: In contrast to the robust mutual interpretability phenomenon in set theory, Ali Enayat proved that bi-interpretation is absent: distinct theories extending ZF are never bi-interpretable and models of ZF are bi-interpretable only when they are isomorphic. Nevertheless, for natural weaker set theories, we prove, including Zermelo-Fraenkel set theory ZFC- without power set and Zermelo set theory Z, there are nontrivial instances of bi-interpretation. Specifically, there are well-founded models of ZFC- that are bi-interpretable, but not isomorphic—even $\langle H_{\omega_1},\in\rangle$ and $\langle H_{\omega_2},\in\rangle$ can be bi-interpretable—and there are distinct bi-interpretable theories extending ZFC-. Similarly, using a construction of Mathias, we prove that every model of ZF is bi-interpretable with a model of Zermelo set theory in which the replacement axiom fails. This is joint work with Alfredo Roque Freire.

Bi-interpretation in weak set theories

[bibtex key=”HamkinsFreire:Bi-interpretation-in-weak-set-theories”]

Bi-interpretation in weak set theories

[bibtex key=”FreireHamkins:Bi-interpretation-in-weak-set-theories”]

Abstract. In contrast to the robust mutual interpretability phenomenon in set theory, Ali Enayat proved that bi-interpretation is absent: distinct theories extending ZF are never bi-interpretable and models of ZF are bi-interpretable only when they are isomorphic. Nevertheless, for natural weaker set theories, we prove, including Zermelo-Fraenkel set theory $\newcommand\ZFCm{\text{ZFC}^-}\ZFCm$ without power set and Zermelo set theory Z, there are nontrivial instances of bi-interpretation. Specifically, there are well-founded models of ZFC- that are bi-interpretable, but not isomorphic — even $\langle H_{\omega_1},\in\rangle$ and $\langle H_{\omega_2},\in\rangle$ can be bi-interpretable — and there are distinct bi-interpretable theories extending ZFC-. Similarly, using a construction of Mathias, we prove that every model of ZF is bi-interpretable with a model of Zermelo set theory in which the replacement axiom fails.

Set theory exhibits a robust mutual interpretability phenomenon: in a given model of set theory, we can define diverse other interpreted models of set theory. In any model of Zermelo-Fraenkel ZF set theory, for example, we can define an interpreted model of ZFC + GCH, via the constructible universe, as well as definable interpreted models of ZF + ¬AC, of ZFC + MA + ¬CH, of ZFC + $\mathfrak{b}<\mathfrak{d}$, and so on for hundreds of other theories. For these latter theories, set theorists often use forcing to construct outer models of the given model; but nevertheless the Boolean ultrapower method provides definable interpreted models of these theories inside the original model (explained in theorem 7). Similarly, in models of ZFC with large cardinals, one can define fine-structural canonical inner models with large cardinals and models of ZF satisfying various determinacy principles, and vice versa. In this way, set theory exhibits an abundance of natural mutually interpretable theories.

Do these instances of mutual interpretation fulfill the more vigourous conception of bi-interpretation? Two models or theories are mutually interpretable, when merely each is interpreted in the other, whereas bi-interpretation requires that the interpretations are invertible in a sense after iteration, so that if one should interpret one model or theory in the other and then re-interpret the first theory inside that, then the resulting model should be definably isomorphic to the original universe (precise definitions in sections 2 and 3). The interpretations mentioned above are not bi-interpretations, for if we start in a model of ZFC+¬CH and then go to L in order to interpret a model of ZFC+GCH, then we’ve already discarded too much set-theoretic information to expect that we could get a copy of our original model back by interpreting inside L. This problem is inherent, in light of the following theorem of Ali Enayat, showing that indeed there is no nontrivial bi-interpretation phenomenon to be found amongst the set-theoretic models and theories satisfying ZF. In interpretation, one must inevitably discard set-theoretic information.

Theorem. (Enayat 2016)

  1. ZF is solid: no two models of ZF are bi-interpretable.
  2. ZF is tight: no two distinct theories extending ZF are bi-interpretable.

The proofs of these theorems, provided in section 6, seem to use the full strength of ZF, and Enayat had consequently inquired whether the solidity/tightness phenomenon somehow required the strength of ZF set theory. In this paper, we shall find support for that conjecture by establishing nontrivial instances of bi-interpretation in various natural weak set theories, including Zermelo-Fraenkel theory $\ZFCm$, without the power set axiom, and Zermelo set theory Z, without the replacement axiom.

Main Theorems

  1. $\ZFCm$ is not solid: there are well-founded models of $\ZFCm$ that are bi-interpretable, but not isomorphic.
  2. Indeed, it is relatively consistent with ZFC that $\langle H_{\omega_1},\in\rangle$ and $\langle H_{\omega_2},\in\rangle$ are bi-interpretable.
  3. $\ZFCm$ is not tight: there are distinct bi-interpretable extensions of $\ZFCm$.
  4. Z is not solid: there are well-founded models of Z that are bi-interpretable, but not isomorphic.
  5. Indeed, every model of ZF is bi-interpretable with a transitive inner model of Z in which the replacement axiom fails.
  6. Z is not tight: there are distinct bi-interpretable extensions of Z.

    These claims are made and proved in theorems 20, 17, 21 and 22. We shall in addition prove the following theorems on this theme:

  7. Well-founded models of ZF set theory are never mutually interpretable.
  8. The Väänänen internal categoricity theorem does not hold for $\ZFCm$, not even for well-founded models.

These are theorems 14 and 16. Statement (8) concerns the existence of a model $\langle M,\in,\bar\in\rangle$ satisfying $\ZFCm(\in,\bar\in)$, meaning $\ZFCm$ in the common language with both predicates, using either $\in$ or $\bar\in$ as the membership relation, such that $\langle M,\in\rangle$ and $\langle M,\bar\in\rangle$ are not isomorphic.

Read more in the full article: [bibtex key=”FreireHamkins:Bi-interpretation-in-weak-set-theories”]

Different set theories are never bi-interpretable

I was fascinated recently to discover something I hadn’t realized about relative interpretability in set theory, and I’d like to share it here. Namely,

Different set theories extending ZF are never bi-interpretable!

For example, ZF and ZFC are not bi-interpretable, and neither are ZFC and ZFC+CH, nor ZFC and ZFC+$\neg$CH, despite the fact that all these theories are equiconsistent. The basic fact is that there are no nontrivial instances of bi-interpretation amongst the models of ZF set theory. This is surprising, and could even be seen as shocking, in light of the philosophical remarks one sometimes hears asserted in the philosophy of set theory that what is going on with the various set-theoretic translations from large cardinals to determinacy to inner model theory, to mention a central example, is that we can interpret between these theories and consequently it doesn’t much matter which context is taken as fundamental, since we can translate from one context to another without loss.

The bi-interpretation result shows that these interpretations do not and cannot rise to the level of bi-interpretations of theories — the most robust form of mutual relative interpretability — and consequently, the translations inevitably must involve a loss of information.

To be sure, set theorists classify the various set-theoretic principles and theories into a hierarchy, often organized by consistency strength or by other notions of interpretative power, using forcing or definable inner models. From any model of ZF, for example, we can construct a model of ZFC, and from any model of ZFC, we can construct models of ZFC+CH or ZFC+$\neg$CH and so on. From models with sufficient large cardinals we can construct models with determinacy or inner-model-theoretic fine structure and vice versa. And while we have relative consistency results and equiconsistencies and even mutual interpretations, we will have no nontrivial bi-interpretations.

(I had proved the theorem a few weeks ago in joint work with Alfredo Roque Freire, who is visiting me in New York this year. We subsequently learned, however, that this was a rediscovery of results that have evidently been proved independently by various authors. Albert Visser proves the case of PA in his paper, “Categories of theories and interpretations,” Logic in Tehran, 284–341, Lect. Notes Log., 26, Assoc. Symbol. Logic, La Jolla, CA, 2006, (pdf, see pp. 52-55). Ali Enayat gave a nice model-theoretic argument for showing specifically that ZF and ZFC are not bi-interpretable, using the fact that ZFC models can have no involutions in their automorphism groups, but ZF models can; and he proved the general version of the theorem, for ZF, second-order arithmetic $Z_2$ and second-order set theory KM in his 2016 article, A. Enayat, “Variations on a Visserian theme,” in Liber Amicorum Alberti : a tribute to Albert Visser / Jan van Eijck, Rosalie Iemhoff and Joost J. Joosten (eds.) Pages, 99-110. ISBN, 978-1848902046. College Publications, London. The ZF version was apparently also observed independently by Harvey Friedman, Visser and Fedor Pakhomov.)

Meanwhile, let me explain our argument. Recall from model theory that one theory $S$ is interpreted in another theory $T$, if in any model of the latter theory $M\models T$, we can define (and uniformly so in any such model) a certain domain $N\subset M^k$ and relations and functions on that domain so as to make $N$ a model of $S$. For example, the theory of algebraically closed fields of characteristic zero is interpreted in the theory of real-closed fields, since in any real-closed field $R$, we can consider pairs $(a,b)$, thinking of them as $a+bi$, and define addition and multiplication on those pairs in such a way so as to construct an algebraically closed field of characteristic zero.

Two theories are thus mutually interpretable, if each of them is interpretable in the other. Such theories are necessarily equiconsistent, since from any model of one of them we can produce a model of the other.

Note that mutual interpretability, however, does not insist that the two translations are inverse to each other, even up to isomorphism. One can start with a model of the first theory $M\models T$ and define the interpreted model $N\models S$ of the second theory, which has a subsequent model of the first theory again $\bar M\models T$ inside it. But the definition does not insist on any particular connection between $M$ and $\bar M$, and these models need not be isomorphic nor even elementarily equivalent in general.

By addressing this, one arrives at a stronger and more robust form of mutual interpretability. Namely, two theories $S$ and $T$ are bi-interpretable, if they are mutually interpretable in such a way that the models can see that the interpretations are inverse. That is, for any model $M$ of the theory $T$, if one defines the interpreted model $N\models S$ inside it, and then defines the interpreted model $\bar M$ of $T$ inside $N$, then $M$ is isomorphic to $\bar M$ by a definable isomorphism in $M$, and uniformly so (and the same with the theories in the other direction). Thus, every model of one of the theories can see exactly how it itself arises definably in the interpreted model of the other theory.

For example, the theory of linear orders $\leq$ is bi-interpretable with the theory of strict linear order $<$, since from any linear order $\leq$ we can define the corresponding strict linear order $<$ on the same domain, and from any strict linear order $<$ we can define the corresponding linear order $\leq$, and doing it twice brings us back again to the same order.

For a richer example, the theory PA is bi-interpretable with the finite set theory $\text{ZF}^{\neg\infty}$, where one drops the infinity axiom from ZF and replaces it with the negation of infinity, and where one has the $\in$-induction scheme in place of the foundation axiom. The interpretation is via the Ackerman encoding of hereditary finite sets in arithmetic, so that $n\mathrel{E} m$ just in case the $n^{th}$ binary digit of $m$ is $1$. If one starts with the standard model $\mathbb{N}$, then the resulting structure $\langle\mathbb{N},E\rangle$ is isomorphic to the set $\langle\text{HF},\in\rangle$ of hereditarily finite sets. More generally, by carrying out the Ackermann encoding in any model of PA, one thereby defines a model of $\text{ZF}^{\neg\infty}$, whose natural numbers are isomorphic to the original model of PA, and these translations make a bi-interpretation.

We are now ready to prove that this bi-interpretation situation does not occur with different set theories extending ZF.

Theorem. Distinct set theories extending ZF are never bi-interpretable. Indeed, there is not a single model-theoretic instance of bi-interpretation occurring with models of different set theories extending ZF.

Proof. I mean “distinct” here in the sense that the two theories are not logically equivalent; they do not have all the same theorems. Suppose that we have a bi-interpretation instance of the theories $S$ and $T$ extending ZF. That is, suppose we have a model $\langle M,\in\rangle\models T$ of the one theory, and inside $M$, we can define an interpreted model of the other theory $\langle N,\in^N\rangle\models S$, so the domain of $N$ is a definable class in $M$ and the membership relation $\in^N$ is a definable relation on that class in $M$; and furthermore, inside $\langle N,\in^N\rangle$, we have a definable structure $\langle\bar M,\in^{\bar M}\rangle$ which is a model of $T$ again and isomorphic to $\langle M,\in^M\rangle$ by an isomorphism that is definable in $\langle M,\in^M\rangle$. So $M$ can define the map $a\mapsto \bar a$ that forms an isomorphism of $\langle M,\in^M\rangle$ with $\langle \bar M,\in^{\bar M}\rangle$. Our argument will work whether we allow parameters in any of these definitions or not.

I claim that $N$ must think the ordinals of $\bar M$ are well-founded, for otherwise it would have some bounded cut $A$ in the ordinals of $\bar M$ with no least upper bound, and this set $A$ when pulled back pointwise by the isomorphism of $M$ with $\bar M$ would mean that $M$ has a cut in its own ordinals with no least upper bound; but this cannot happen in ZF.

If the ordinals of $N$ and $\bar M$ are isomorphic in $N$, then all three models have isomorphic ordinals in $M$, and in this case, $\langle M,\in^M\rangle$ thinks that $\langle N,\in^N\rangle$ is a well-founded extensional relation of rank $\text{Ord}$. Such a relation must be set-like (since there can be no least instance where the predecessors form a proper class), and so $M$ can perform the Mostowski collapse of $\in^N$, thereby realizing $N$ as a transitive class $N\subseteq M$ with $\in^N=\in^M\upharpoonright N$. Similarly, by collapsing we may assume $\bar M\subseteq N$ and $\in^{\bar M}=\in^M\upharpoonright\bar M$. So the situation consists of inner models $\bar M\subseteq N\subseteq M$ and $\langle \bar M,\in^M\rangle$ is isomorphic to $\langle M,\in^M\rangle$ in $M$. This is impossible unless all three models are identical, since a simple $\in^M$-induction shows that $\pi(y)=y$ for all $y$, because if this is true for the elements of $y$, then $\pi(y)=\{\pi(x)\mid x\in y\}=\{x\mid x\in y\}=y$. So $\bar M=N=M$ and so $N$ and $M$ satisfy the same theory, contrary to assumption.

If the ordinals of $\bar M$ are isomorphic to a proper initial segment of the ordinals of $N$, then a similar Mostowski collapse argument would show that $\langle\bar M,\in^{\bar M}\rangle$ is isomorphic in $N$ to a transitive set in $N$. Since this structure in $N$ would have a truth predicate in $N$, we would be able to pull this back via the isomorphism to define (from parameters) a truth predicate for $M$ in $M$, contrary to Tarski’s theorem on the non-definability of truth.

The remaining case occurs when the ordinals of $N$ are isomorphic in $N$ to an initial segment of the ordinals of $\bar M$. But this would mean that from the perspective of $M$, the model $\langle N,\in^N\rangle$ has some ordinal rank height, which would mean by the Mostowski collapse argument that $M$ thinks $\langle N,\in^N\rangle$ is isomorphic to a transitive set. But this contradicts the fact that $M$ has an injection of $M$ into $N$. $\Box$

It follows that although ZF and ZFC are equiconsistent, they are not bi-interpretable. Similarly, ZFC and ZFC+CH and ZFC+$\neg$CH are equiconsistent, but no pair of them is bi-interpretable. And again with all the various equiconsistency results concerning large cardinals.

A similar argument works with PA to show that different extensions of PA are never bi-interpretable.