Different set theories are never bi-interpretable

I was fascinated recently to discover something I hadn’t realized about relative interpretability in set theory, and I’d like to share it here. Namely,

Different set theories extending ZF are never bi-interpretable!

For example, ZF and ZFC are not bi-interpretable, and neither are ZFC and ZFC+CH, nor ZFC and ZFC+$\neg$CH, despite the fact that all these theories are equiconsistent. The basic fact is that there are no nontrivial instances of bi-interpretation amongst the models of ZF set theory. This is surprising, and could even be seen as shocking, in light of the philosophical remarks one sometimes hears asserted in the philosophy of set theory that what is going on with the various set-theoretic translations from large cardinals to determinacy to inner model theory, to mention a central example, is that we can interpret between these theories and consequently it doesn’t much matter which context is taken as fundamental, since we can translate from one context to another without loss.

The bi-interpretation result shows that these interpretations do not and cannot rise to the level of bi-interpretations of theories — the most robust form of mutual relative interpretability — and consequently, the translations inevitably must involve a loss of information.

To be sure, set theorists classify the various set-theoretic principles and theories into a hierarchy, often organized by consistency strength or by other notions of interpretative power, using forcing or definable inner models. From any model of ZF, for example, we can construct a model of ZFC, and from any model of ZFC, we can construct models of ZFC+CH or ZFC+$\neg$CH and so on. From models with sufficient large cardinals we can construct models with determinacy or inner-model-theoretic fine structure and vice versa. And while we have relative consistency results and equiconsistencies and even mutual interpretations, we will have no nontrivial bi-interpretations.

(I had proved the theorem a few weeks ago in joint work with Alfredo Roque Freire, who is visiting me in New York this year. We subsequently learned, however, that this was a rediscovery of results that have evidently been proved independently by various authors. Albert Visser proves the case of PA in his paper, “Categories of theories and interpretations,” Logic in Tehran, 284–341, Lect. Notes Log., 26, Assoc. Symbol. Logic, La Jolla, CA, 2006, (pdf, see pp. 52-55). Ali Enayat gave a nice model-theoretic argument for showing specifically that ZF and ZFC are not bi-interpretable, using the fact that ZFC models can have no involutions in their automorphism groups, but ZF models can; and he proved the general version of the theorem, for ZF, second-order arithmetic $Z_2$ and second-order set theory KM in his 2016 article, A. Enayat, “Variations on a Visserian theme,” in Liber Amicorum Alberti : a tribute to Albert Visser / Jan van Eijck, Rosalie Iemhoff and Joost J. Joosten (eds.) Pages, 99-110. ISBN, 978-1848902046. College Publications, London. The ZF version was apparently also observed independently by Harvey Friedman, Visser and Fedor Pakhomov.)

Meanwhile, let me explain our argument. Recall from model theory that one theory $S$ is interpreted in another theory $T$, if in any model of the latter theory $M\models T$, we can define (and uniformly so in any such model) a certain domain $N\subset M^k$ and relations and functions on that domain so as to make $N$ a model of $S$. For example, the theory of algebraically closed fields of characteristic zero is interpreted in the theory of real-closed fields, since in any real-closed field $R$, we can consider pairs $(a,b)$, thinking of them as $a+bi$, and define addition and multiplication on those pairs in such a way so as to construct an algebraically closed field of characteristic zero.

Two theories are thus mutually interpretable, if each of them is interpretable in the other. Such theories are necessarily equiconsistent, since from any model of one of them we can produce a model of the other.

Note that mutual interpretability, however, does not insist that the two translations are inverse to each other, even up to isomorphism. One can start with a model of the first theory $M\models T$ and define the interpreted model $N\models S$ of the second theory, which has a subsequent model of the first theory again $\bar M\models T$ inside it. But the definition does not insist on any particular connection between $M$ and $\bar M$, and these models need not be isomorphic nor even elementarily equivalent in general.

By addressing this, one arrives at a stronger and more robust form of mutual interpretability. Namely, two theories $S$ and $T$ are bi-interpretable, if they are mutually interpretable in such a way that the models can see that the interpretations are inverse. That is, for any model $M$ of the theory $T$, if one defines the interpreted model $N\models S$ inside it, and then defines the interpreted model $\bar M$ of $T$ inside $N$, then $M$ is isomorphic to $\bar M$ by a definable isomorphism in $M$, and uniformly so (and the same with the theories in the other direction). Thus, every model of one of the theories can see exactly how it itself arises definably in the interpreted model of the other theory.

For example, the theory of linear orders $\leq$ is bi-interpretable with the theory of strict linear order $<$, since from any linear order $\leq$ we can define the corresponding strict linear order $<$ on the same domain, and from any strict linear order $<$ we can define the corresponding linear order $\leq$, and doing it twice brings us back again to the same order.

For a richer example, the theory PA is bi-interpretable with the finite set theory $\text{ZF}^{\neg\infty}$, where one drops the infinity axiom from ZF and replaces it with the negation of infinity, and where one has the $\in$-induction scheme in place of the foundation axiom. The interpretation is via the Ackerman encoding of hereditary finite sets in arithmetic, so that $n\mathrel{E} m$ just in case the $n^{th}$ binary digit of $m$ is $1$. If one starts with the standard model $\mathbb{N}$, then the resulting structure $\langle\mathbb{N},E\rangle$ is isomorphic to the set $\langle\text{HF},\in\rangle$ of hereditarily finite sets. More generally, by carrying out the Ackermann encoding in any model of PA, one thereby defines a model of $\text{ZF}^{\neg\infty}$, whose natural numbers are isomorphic to the original model of PA, and these translations make a bi-interpretation.

We are now ready to prove that this bi-interpretation situation does not occur with different set theories extending ZF.

Theorem. Distinct set theories extending ZF are never bi-interpretable. Indeed, there is not a single model-theoretic instance of bi-interpretation occurring with models of different set theories extending ZF.

Proof. I mean “distinct” here in the sense that the two theories are not logically equivalent; they do not have all the same theorems. Suppose that we have a bi-interpretation instance of the theories $S$ and $T$ extending ZF. That is, suppose we have a model $\langle M,\in\rangle\models T$ of the one theory, and inside $M$, we can define an interpreted model of the other theory $\langle N,\in^N\rangle\models S$, so the domain of $N$ is a definable class in $M$ and the membership relation $\in^N$ is a definable relation on that class in $M$; and furthermore, inside $\langle N,\in^N\rangle$, we have a definable structure $\langle\bar M,\in^{\bar M}\rangle$ which is a model of $T$ again and isomorphic to $\langle M,\in^M\rangle$ by an isomorphism that is definable in $\langle M,\in^M\rangle$. So $M$ can define the map $a\mapsto \bar a$ that forms an isomorphism of $\langle M,\in^M\rangle$ with $\langle \bar M,\in^{\bar M}\rangle$. Our argument will work whether we allow parameters in any of these definitions or not.

I claim that $N$ must think the ordinals of $\bar M$ are well-founded, for otherwise it would have some bounded cut $A$ in the ordinals of $\bar M$ with no least upper bound, and this set $A$ when pulled back pointwise by the isomorphism of $M$ with $\bar M$ would mean that $M$ has a cut in its own ordinals with no least upper bound; but this cannot happen in ZF.

If the ordinals of $N$ and $\bar M$ are isomorphic in $N$, then all three models have isomorphic ordinals in $M$, and in this case, $\langle M,\in^M\rangle$ thinks that $\langle N,\in^N\rangle$ is a well-founded extensional relation of rank $\text{Ord}$. Such a relation must be set-like (since there can be no least instance where the predecessors form a proper class), and so $M$ can perform the Mostowski collapse of $\in^N$, thereby realizing $N$ as a transitive class $N\subseteq M$ with $\in^N=\in^M\upharpoonright N$. Similarly, by collapsing we may assume $\bar M\subseteq N$ and $\in^{\bar M}=\in^M\upharpoonright\bar M$. So the situation consists of inner models $\bar M\subseteq N\subseteq M$ and $\langle \bar M,\in^M\rangle$ is isomorphic to $\langle M,\in^M\rangle$ in $M$. This is impossible unless all three models are identical, since a simple $\in^M$-induction shows that $\pi(y)=y$ for all $y$, because if this is true for the elements of $y$, then $\pi(y)=\{\pi(x)\mid x\in y\}=\{x\mid x\in y\}=y$. So $\bar M=N=M$ and so $N$ and $M$ satisfy the same theory, contrary to assumption.

If the ordinals of $\bar M$ are isomorphic to a proper initial segment of the ordinals of $N$, then a similar Mostowski collapse argument would show that $\langle\bar M,\in^{\bar M}\rangle$ is isomorphic in $N$ to a transitive set in $N$. Since this structure in $N$ would have a truth predicate in $N$, we would be able to pull this back via the isomorphism to define (from parameters) a truth predicate for $M$ in $M$, contrary to Tarski’s theorem on the non-definability of truth.

The remaining case occurs when the ordinals of $N$ are isomorphic in $N$ to an initial segment of the ordinals of $\bar M$. But this would mean that from the perspective of $M$, the model $\langle N,\in^N\rangle$ has some ordinal rank height, which would mean by the Mostowski collapse argument that $M$ thinks $\langle N,\in^N\rangle$ is isomorphic to a transitive set. But this contradicts the fact that $M$ has an injection of $M$ into $N$. $\Box$

It follows that although ZF and ZFC are equiconsistent, they are not bi-interpretable. Similarly, ZFC and ZFC+CH and ZFC+$\neg$CH are equiconsistent, but no pair of them is bi-interpretable. And again with all the various equiconsistency results concerning large cardinals.

A similar argument works with PA to show that different extensions of PA are never bi-interpretable.

Nonamalgamation in the Cohen generic multiverse, CUNY Logic Workshop, March 2018

This will be a talk for the CUNY Logic Workshop on March 23, 2018, GC 6417 2-3:30pm.

Abstract. Consider a countable model of set theory $M$ in the context of all its successive forcing extensions and grounds. This generic multiverse has long been known to exhibit instances of nonamalgamation: one can have two extensions $M[c]$ and $M[d]$, both adding a merely a generic Cohen real, which have no further extension in common. In this talk, I shall describe new joint work that illuminates the extent of non-amalgamation: every finite partial order (and more) embeds into the generic multiverse over any given model in a way that preserves amalgamability and non-amalgamability. The proof uses the set-theoretic blockchain argument (pictured above), which has affinities with constructions in computability theory in the Turing degrees. Other arguments, which also resemble counterparts in computability theory, show that the generic multiverse exhibits the exact pair phenonemon for increasing chains. This is joint work with Miha Habič, myself, Lukas Daniel Klausner and Jonathan Verner. The paper will be available this Spring.

https://plus.google.com/u/0/+JoelDavidHamkins1/posts/NJp2N7bkkrR

The modal logic of arithmetic potentialism and the universal algorithm

[bibtex key=”Hamkins:The-modal-logic-of-arithmetic-potentialism”]

Abstract. Natural potentialist systems arise from the models of arithmetic when they are considered under their various natural extension concepts, such as end-extensions, arbitrary extension, $\Sigma_n$-elementary extensions, conservative extensions and more. For these potentialist systems, I prove, a propositional modal assertion is valid in a model of arithmetic, with respect to assertions in the language of arithmetic with parameters, exactly when it is an assertion of S4. Meanwhile, with respect to sentences, the validities of a model are always between S4 and S5, and these bounds are sharp in that both endpoints are realized. The models validating exactly S5 are the models of the arithmetic maximality principle, which asserts that every possibly necessary statement is already true, and these models are equivalently characterized as those satisfying a maximal $\Sigma_1$ theory. The main proof makes fundamental use of the universal algorithm, of which this article provides a self-contained account.

 

In this article, I consider the models of arithmetic under various natural extension concepts, including end-extensions, arbitrary extensions, $\Sigma_n$-elementary extensions, conservative extensions and more. Each extension concept gives rise to an arithmetic potentialist system, a Kripke model of possible arithmetic worlds, and the main goal is to discover the modal validities of these systems.

For most of the extension concepts, a modal assertion is valid with respect to assertions in the language of arithmetic, allowing parameters, exactly when it is an assertion of the modal theory S4. For sentences, however, the modal validities form a theory between S4 and S5, with both endpoints being realized. A model of arithmetic validates S5 with respect to sentences just in case it is a model of the arithmetic maximality principle, and these models are equivalently characterized as those realizing a maximal $\Sigma_1$ theory.

The main argument relies fundamentally on the universal algorithm, the theorem due to Woodin that there is a Turing machine program that can enumerate any finite sequence in the right model of arithmetic, and furthermore this model can be end-extended so as to realize any further extension of that sequence available in the model. In the paper, I give a self-contained account of this theorem using my simplified proof.

The paper concludes with philosophical remarks on the nature of potentialism, including a discussion of how the linear inevitability form of potentialism is actually much closer to actualism than the more radical forms of potentialism, which exhibit branching possibility. I also propose to view the philosphy of ultrafinitism in modal terms as a form of potentialism, pushing the issue of branching possibility in ultrafinitism to the surface.

Self reference in computability theory and the universal algorithm, Ouroboros: Formal Criteria of Self-Reference in Mathematics and Philosophy, Bonn, February 2018

This will be a talk for the conference: Ouroboros: Formal Criteria of Self-Reference in Mathematics and Philosophy, held in Bonn, February 16-18, 2018.

Abstract. I shall give an elementary account of the universal algorithm, due to Woodin, showing how the capacity for self-reference in arithmetic gives rise to a Turing machine program $e$, which provably enumerates a finite set of numbers, but which can in principle enumerate any finite set of numbers, when it is run in a suitable model of arithmetic. Furthermore, the algorithm can successively enumerate any desired extension of the sequence, when run in a suitable top-extension of the universe. Thus, the algorithm sheds some light on the debate between free will and determinism, if one should imagine extending the universe into a nonstandard time scale. An analogous result holds in set theory, where Woodin and I have provided a universal locally definable finite set, which can in principle be any finite set, in the right universe, and which can furthermore be successively extended to become any desired finite superset of that set in a suitable top-extension of that universe.

Ouroboros Bonn 2018 Conference Poster | Slides

The universal finite set

[bibtex key=”HamkinsWoodin:The-universal-finite-set”]

Abstract. We define a certain finite set in set theory $\{x\mid\varphi(x)\}$ and prove that it exhibits a universal extension property: it can be any desired particular finite set in the right set-theoretic universe and it can become successively any desired larger finite set in top-extensions of that universe. Specifically, ZFC proves the set is finite; the definition $\varphi$ has complexity $\Sigma_2$, so that any affirmative instance of it $\varphi(x)$ is verified in any sufficiently large rank-initial segment of the universe $V_\theta$; the set is empty in any transitive model and others; and if $\varphi$ defines the set $y$ in some countable model $M$ of ZFC and $y\subseteq z$ for some finite set $z$ in $M$, then there is a top-extension of $M$ to a model $N$ in which $\varphi$ defines the new set $z$. Thus, the set shows that no model of set theory can realize a maximal $\Sigma_2$ theory with its natural number parameters, although this is possible without parameters. Using the universal finite set, we prove that the validities of top-extensional set-theoretic potentialism, the modal principles valid in the Kripke model of all countable models of set theory, each accessing its top-extensions, are precisely the assertions of S4. Furthermore, if ZFC is consistent, then there are models of ZFC realizing the top-extensional maximality principle.

Woodin had established the universal algorithm phenomenon, showing that there is a Turing machine program with a certain universal top-extension property in models of arithmetic (see also work of Blanck and Enayat 2017 and upcoming paper of mine with Gitman and Kossak; also my post The universal algorithm: a new simple proof of Woodin’s theorem). Namely, the program provably enumerates a finite set of natural numbers, but it is relatively consistent with PA that it enumerates any particular desired finite set of numbers, and furthermore, if $M$ is any model of PA in which the program enumerates the set $s$ and $t$ is any (possibly nonstandard) finite set in $M$ with $s\subseteq t$, then there is a top-extension of $M$ to a model $N$ in which the program enumerates exactly the new set $t$. So it is a universal finite computably enumerable set, which can in principle be any desired finite set of natural numbers in the right arithmetic universe and become any desired larger finite set in a suitable larger arithmetic universe.

I had inquired whether there is a set-theoretic analogue of this phenomenon, using $\Sigma_2$ definitions in set theory in place of computable enumerability (see The universal definition — it can define any mathematical object you like, in the right set-theoretic universe). The idea was that just as a computably enumerable set is one whose elements are gradually revealed as the computation proceeds, a $\Sigma_2$-definable set in set theory is precisely one whose elements become verified at some level $V_\theta$ of the cumulative set-theoretic hierarchy as it grows. In this sense, $\Sigma_2$ definability in set theory is analogous to computable enumerability in arithmetic.

Main Question. Is there a universal $\Sigma_2$ definition in set theory, one which can define any desired particular set in some model of \ZFC\ and always any desired further set in a suitable top-extension?

I had noticed in my earlier post that one can do this using a $\Pi_3$ definition, or with a $\Sigma_2$ definition, if one restricts to models of a certain theory, such as $V\neq\text{HOD}$ or the eventual GCH, or if one allows $\{x\mid\varphi(x)\}$ sometimes to be a proper class.

Here, we provide a fully general affirmative answer with the following theorem.

Main Theorem. There is a formula $\varphi(x)$ of complexity $\Sigma_2$ in the language of set theory, provided in the proof, with the following properties:

  1. ZFC proves that $\{x\mid \varphi(x)\}$ is a finite set.
  2. In any transitive model of \ZFC\ and others, this set is empty.
  3. If $M$ is a countable model of ZFC in which $\varphi$ defines the set $y$ and $z\in M$ is any finite set in $M$ with $y\subseteq z$, then there is a top-extension of $M$ to a model $N$ in which $\varphi$ defines exactly $z$.

By taking the union of the set defined by $\varphi$, an arbitrary set can be achieved; so the finite-set result as stated in the main theorem implies the arbitrary set case as in the main question. One can also easily deduce a version of the theorem to give a universal countable set or a universal set of some other size (for example, just take the union of the countable elements of the universal set). One can equivalently formulate the main theorem in terms of finite sequences, rather than sets, so that the sequence is extended as desired in the top-extension. The sets $y$ and $z$ in statement (3) may be nonstandard finite, if $M$ if $\omega$-nonstandard.

We use this theorem to establish the fundamental validities of top-extensional set-theoretic potentialism. Specifically, in the potentialist system consisting of the countable models of ZFC, with each accessing its top extensions, the modal validities with respect to substitution instances in the language of set theory, with parameters, are exactly the assertions of S4. When only sentences are considered, the validities are between S4 and S5, with both endpoints realized.

In particular, we prove that if ZFC is consistent, then there is a model $M$ of ZFC with the top-extensional maximality principle: any sentence $\sigma$ in the language of set theory which is true in some top extension $M^+$ and all further top extensions of $M^+$, is already true in $M$.

This principle is true is any model of set theory with a maximal $\Sigma_2$ theory, but it is never true when $\sigma$ is allowed to have natural-number parameters, and in particular, it is never true in any $\omega$-standard model of set theory.

Click through to the arXiv for more, the full article in pdf.

[bibtex key=”HamkinsWoodin:The-universal-finite-set”]

Models of set theory with the same reals and the same cardinals, but which disagree on the continuum hypothesis

Terry_Marks,_Nightmare_in_a_MirrorI’d like to describe a certain interesting and surprising situation that can happen with models of set theory.

Theorem. If $\newcommand\ZFC{\text{ZFC}}\ZFC$ set theory is consistent, then there are two models of $\ZFC$ set theory $M$ and $N$ for which

  • $M$ and $N$ have the same real numbers $$\newcommand\R{\mathbb{R}}\R^M=\R^N.$$
  • $M$ and $N$ have the ordinals and the same cardinals $$\forall\alpha\qquad \aleph_\alpha^M=\aleph_\alpha^N$$
  • But $M$ thinks that the continuum hypothesis $\newcommand\CH{\text{CH}}\CH$ is true, while $N$ thinks that $\CH$ is false.

This is a little strange, since the two models have the set $\R$ in common and they agree on the cardinal numbers, but $M$ thinks that $\R$ has size $\aleph_1$ and $N$ will think that $\R$ has size $\aleph_2$.  In particular, $M$ can well-order the reals in order type $\omega_1$ and $N$ can do so in order-type $\omega_2$, even though the two models have the same reals and they agree that these order types have different cardinalities.

Another abstract way to describe what is going on is that even if two models of set theory, even transitive models, agree on which ordinals are cardinals, they needn’t agree on which sets are equinumerous, for sets they have in common, even for the reals.

Let me emphasize that it is the requirement that the models have the same cardinals that makes the problem both subtle and surprising. If you drop that requirement, then the problem is an elementary exercise in forcing: start with any model $V$, and first force $\CH$ to fail in $V[H]$ by adding a lot of Cohen reals, then force to $V[G]$ by collapsing the continuum to $\aleph_1$. This second step adds no new reals and forces $\CH$, and so $V[G]$ and $V[H]$ will have the same reals, while $V[H]$ thinks $\CH$ is true and $V[G]$ thinks $\CH$ is false. The problem becomes nontrivial and interesting mainly when you insist that cardinals are not collapsed.

In fact, the situation described in the theorem can be forced over any given model of $\ZFC$.

Theorem. Every model of set theory $V\models\ZFC$ has two set-forcing extensions $V[G]$ and $V[H]$ for which

  • $V[G]$ and $V[H]$ have the same real numbers $$\newcommand\R{\mathbb{R}}\R^{V[G]}=\R^{V[H]}.$$
  • $V[G]$ and $V[H]$ have the same cardinals $$\forall\alpha\qquad \aleph_\alpha^{V[G]}=\aleph_\alpha^{V[H]}$$
  • But $V[G]$ thinks that the continuum hypothesis $\CH$ is true, while $V[H]$ thinks that $\CH$ is false.

Proof. Start in any model $V\models\ZFC$, and by forcing if necessary, let’s assume $\CH$ holds in $V$. Let $H\subset\text{Add}(\omega,\omega_2)$ be $V$-generic for the forcing to add $\omega_2$ many Cohen reals. So $V[H]$ satisfies $\neg\CH$ and has the same ordinals and cardinals as $V$.

Next, force over $V[H]$ using the forcing from $V$ to collapse $\omega_2$ to $\omega_1$, forming the extension $V[H][g]$, where $g$ is the generic bijection between those ordinals. Since we used the forcing in $V$, which is countably closed there, it makes sense to consider $V[g]$.  In this extension, the forcing $\text{Add}(\omega,\omega_1^V)$ and $\text{Add}(\omega,\omega_2^V)$ are isomorphic. Since $H$ is $V[g]$-generic for the latter, let $G=g\mathrel{“}H$ be the image of this filter in $\text{Add}(\omega,\omega_1)$, which is therefore $V[g]$-generic for the former. So $V[g][G]=V[g][H]$. Since the forcing $\text{Add}(\omega,\omega_1)$ is c.c.c., it follows that $V[G]$ also has the same cardinals as $V$ and hence also the same as in $V[H]$.

If we now view these extensions as $V[G][g]=V[H][g]$ and note that the coutable closure of $g$ in $V$ implies that $g$ adds no new reals over either $V[G]$ or $V[H]$, it follows that $\R^{V[G]}=\R^{V[H]}$. So the two models have the same reals and the same cardinals. But $V[G]$ has $\CH$ and $V[H]$ has $\neg\CH$, in light of the forcing, and so the proof is complete. QED

Let me prove the following surprising generalization.

Theorem. If $V$ is any model of $\ZFC$ and $V[G]$ is the forcing extension obtained by adding $\kappa$ many Cohen reals, for some uncountable $\kappa$, then for any other uncountable cardinal $\lambda$, there is another forcing extension $V[H]$ where $H$ is $V$-generic for the forcing to add $\lambda$ many Cohen reals, yet $\R^{V[G]}=\R^{V[H]}$.

Proof. Start in $V[G]$, and let $g$ be $V[G]$-generic to collapse $\lambda$ to $\kappa$, using the collapse forcing of the ground model $V$. This forcing is countably closed in $V$ and therefore does not add reals over $V[G]$. In $V[g]$, the two forcing notions $\text{Add}(\omega,\kappa)$ and $\text{Add}(\omega,\lambda)$ are isomorphic. Thus, since $G$ is $V[g]$-generic for the former poset, it follows that the image $H=g\mathrel{“}G$ is $V[g]$-generic for the latter poset. So $V[H]$ is generic over $V$ for adding $\lambda$ many Cohen reals. By construction, we have $V[G][g]=V[H][g]$, and since $g$ doesn’t add reals, it follows that $\R^{V[G]}=\R^{V[H]}$, as desired. QED

I have a vague recollection of having first heard of this problem many years ago, perhaps as a graduate student, although I don’t quite recall where it was or indeed what the construction was — the argument above is my reconstruction (which I have updated and extended from my initial post). If someone could provide a reference in the comments for due credit, I’d be appreciative.  The problem appeared a few years ago on MathOverflow.

The inclusion relations of the countable models of set theory are all isomorphic

[bibtex key=”HamkinsKikuchi:The-inclusion-relations-of-the-countable-models-of-set-theory-are-all-isomorphic”]

mereology type

Abstract. The structures $\langle M,\newcommand\of{\subseteq}\of^M\rangle$ arising as the inclusion relation of a countable model of sufficient set theory $\langle M,\in^M\rangle$, whether well-founded or not, are all isomorphic. These structures $\langle M,\of^M\rangle$ are exactly the countable saturated models of the theory of set-theoretic mereology: an unbounded atomic relatively complemented distributive lattice. A very weak set theory suffices, even finite set theory, provided that one excludes the $\omega$-standard models with no infinite sets and the $\omega$-standard models of set theory with an amorphous set. Analogous results hold also for class theories such as Gödel-Bernays set theory and Kelley-Morse set theory.

Set-theoretic mereology is the study of the inclusion relation $\of$ as it arises within set theory. In any set-theoretic context, with the set membership relation $\in$, one may define the corresponding inclusion relation $\of$ and investigate its properties. Thus, every model of set theory $\langle M,\in^M\rangle$ gives rise to a corresponding model of set-theoretic mereology $\langle M,\of^M\rangle$, the reduct to the inclusion relation.

In our previous article,

J. D. Hamkins and M. Kikuchi, Set-theoretic mereology, Logic and Logical Philosophy, special issue “Mereology and beyond, part II”, vol. 25, iss. 3, pp. 1-24, 2016.

we had identified exactly the complete theory of these mereological structures $\langle M,\of^M\rangle$. Namely, if $\langle M,\in^M\rangle$ is a model of set theory, even for extremely weak theories, including set theory without the infinity axiom, then the corresponding mereological reduct $\langle M,\of^M\rangle$ is an unbounded atomic relatively complemented distributive lattice. We call this the theory of set-theoretic mereology. By a quantifier-elimination argument that we give in our earlier paper, partaking of Tarski’s Boolean-algebra invariants and Ersov’s work on lattices, this theory is complete, finitely axiomatizable and decidable.  We had proved among other things that $\in$ is never definable from $\of$ in any model of set theory and furthermore, some models of set-theoretic mereology can arise as the inclusion relation of diverse models of set theory, with different theories. Furthermore, we proved that $\langle\text{HF},\subseteq\rangle\prec\langle V,\subseteq\rangle$.

After that work, we found it natural to inquire:

Question. Which models of set-theoretic mereology arise as the inclusion relation $\of$ of a model of set theory?

More precisely, given a model $\langle M,\newcommand\sqof{\sqsubseteq}\sqof\rangle$ of set-theoretic mereology, under what circumstances can we place a binary relation $\in^M$ on $M$ in such a way that $\langle M,\in^M\rangle$ is a model of set theory and the inclusion relation $\of$ defined in $\langle M,\in^M\rangle$ is precisely the given relation $\sqof$? One can view this question as seeking a kind of Stone-style representation of the mereological structure $\langle M,\sqof\rangle$, because such a model $M$ would provide a representation of $\langle M,\sqof\rangle$ as a relative field of sets via the model of set theory $\langle M,\in^M\rangle$.

A second natural question was to wonder how much of the theory of the original model of set theory can be recovered from the mereological reduct.

Question. If $\langle M,\of^M\rangle$ is the model of set-theoretic mereology arising as the inclusion relation $\of$ of a model of set theory $\langle M,\in^M\rangle$, what part of the theory of $\langle M,\in^M\rangle$ is determined by the structure $\langle M,\of^M\rangle$?

In the case of the countable models of ZFC, these questions are completely answered by our main theorems.

Main Theorems.

  1. All countable models of set theory $\langle M,\in^M\rangle\models\text{ZFC}$ have isomorphic reducts $\langle M,\of^M\rangle$ to the inclusion relation.
  2. The same holds for models of considerably weaker theories such as KP and even finite set theory, provided one excludes the $\omega$-standard models without infinite sets and the $\omega$-standard models having an amorphous set.
  3. These inclusion reducts $\langle M,\of^M\rangle$ are precisely the countable saturated models of set-theoretic mereology.
  4. Similar results hold for class theory: all countable models of Gödel-Bernays set theory have isomorphic reducts to the inclusion relation, and this reduct is precisely the countably infinite saturated atomic Boolean algebra.

Specifically, we show that the mereological reducts $\langle M,\of^M\rangle$ of the models of sufficient set theory are always $\omega$-saturated, and from this it follows on general model-theoretic grounds that they are all isomorphic, establishing statements (1) and (2). So a countable model $\langle M,\sqof\rangle$ of set-theoretic mereology arises as the inclusion relation of a model of sufficient set theory if and only if it is $\omega$-saturated, establishing (3) and answering the first question. Consequently, in addition, the mereological reducts $\langle M,\of^M\rangle$ of the countable models of sufficient set theory know essentially nothing of the theory of the structure $\langle M,\in^M\rangle$ from which they arose, since $\langle M,\of^M\rangle$ arises equally as the inclusion relation of other models $\langle M,\in^*\rangle$ with any desired sufficient alternative set theory, a fact which answers the second question. Our analysis works with very weak set theories, even finite set theory, provided one excludes the $\omega$-standard models with no infinite sets and the $\omega$-standard models with an amorphous set, since the inclusion reducts of these models are not $\omega$-saturated. We also prove that most of these results do not generalize to uncountable models, nor even to the $\omega_1$-like models.

Our results have some affinity with the classical results in models of arithmetic concerned with the additive reducts of models of PA. Restricting a model of set theory to the inclusion relation $\of$ is, after all, something like restricting a model of arithmetic to its additive part. Lipshitz and Nadel (1978) proved that a countable model of Presburger arithmetic (with $+$ only) can be expanded to a model of PA if and only if it is computably saturated. We had hoped at first to prove a corresponding result for the mereological reducts of the models of set theory. In arithmetic, the additive reducts are not all isomorphic, since the standard system of the PA model is fully captured by the additive reduct. Our main result for the countable models of set theory, however, turned out to be stronger than we had expected, since the inclusion reducts are not merely computably saturated, but fully $\omega$-saturated, and this is why they are all isomorphic. Meanwhile, Lipshitz and Nadel point out that their result does not generalize to uncountable models of arithmetic, and similarly ours also does not generalize to uncountable models of set theory.

The work leaves the following question open:

Question. Are the mereological reducts $\langle M,\of^M\rangle$ of all the countable models $\langle M,\in^M\rangle$ of ZF with an amorphous set all isomorphic?

We expect the answer to come from a deeper understanding of the Tarski-Ersov invariants for the mereological structures combined with knowledge of models of ZF with amorphous sets.

This is joint work with Makoto Kikuchi.

All countable models of set theory have the same inclusion relation up to isomorphism, CUNY Logic Workshop, April 2017

This will be a talk for the CUNY Logic Workshop, April 28, 2:00-3:30 in room 6417 at the CUNY Graduate Center.

mereology type

Abstract.  Take any countable model of set theory $\langle M,\in^M\rangle\models\text{ZFC}$, whether well-founded or not, and consider the corresponding inclusion relation $\langle M,\newcommand\of{\subseteq}\of^M\rangle$.  All such models, we prove, are isomorphic. Indeed, if $\langle M,\in^M\rangle$ is a countable model of set theory — a very weak theory suffices, including finite set theory, if one excludes the $\omega$-standard models with no infinite sets and the $\omega$-standard models with an amorphous set — then the corresponding inclusion reduct $\langle M,\of^M\rangle$ is an $\omega$-saturated model of the theory we have called set-theoretic mereology. Since this is a complete theory, it follows by the back-and-forth construction that all such countable saturated models are isomorphic. Thus, the inclusion relation $\langle M,\of^M\rangle$ knows essentially nothing about the theory of the set-theoretic structure $\langle M,\in^M\rangle$ from which it arose. Analogous results hold also for class theories such as Gödel-Bernays set theory and Kelley-Morse set theory.

This is joint work with Makoto Kikuchi, and our paper is available at

J. D. Hamkins and M. Kikuchi, The inclusion relations of the countable models of set theory are all isomorphic, manuscript under review.

Our previous work, upon which these results build, is available at:

J. D. Hamkins and M. Kikuchi, Set-theoretic mereology, Logic and Logical Philosophy, special issue “Mereology and beyond, part II”, vol. 25, iss. 3, pp. 1-24, 2016.

Same structure, different truths, Stanford University CSLI, May 2016

This will be a talk for the Workshop on Logic, Rationality, and Intelligent Interaction at the CSLI, Stanford University, May 27-28, 2016.

Abstract. To what extent does a structure determine its theory of truth? I shall discuss several surprising mathematical results illustrating senses in which it does not, for the satisfaction relation of first-order logic is less absolute than one might have expected. Two models of set theory, for example, can have exactly the same natural numbers and the same arithmetic structure $\langle\mathbb{N},+,\cdot,0,1,<\rangle$, yet disagree on what is true in this structure; they have the same arithmetic, but different theories of arithmetic truth; two models of set theory can have the same natural numbers and a computable linear order in common, yet disagree on whether it is a well-order; two models of set theory can have the same natural numbers and the same reals, yet disagree on projective truth; two models of set theory can have a rank initial segment of the universe $\langle V_\delta,{\in}\rangle$ in common, yet disagree about whether it is a model of ZFC. These theorems and others can be proved with elementary classical model-theoretic methods, which I shall explain. Indefinite arithmetic truthOn the basis of these observations, Ruizhi Yang (Fudan University, Shanghai) and I argue that the definiteness of the theory of truth for a structure, even in the case of arithmetic, cannot be seen as arising solely from the definiteness of the structure itself in which that truth resides, but rather is a higher-order ontological commitment.

Slides | Main article: Satisfaction is not absolute | CLSI 2016 | Abstract at CLSI

Upward closure and amalgamation in the generic multiverse of a countable model of set theory

[bibtex key=Hamkins2016:UpwardClosureAndAmalgamationInTheGenericMultiverse]

Abstract. I prove several theorems concerning upward closure and amalgamation in the generic multiverse of a countable transitive model of set theory. Every such model $W$ has forcing extensions $W[c]$ and $W[d]$ by adding a Cohen real, which cannot be amalgamated in any further extension, but some nontrivial forcing notions have all their extensions amalgamable. An increasing chain $W[G_0]\subseteq W[G_1]\subseteq\cdots$ has an upper bound $W[H]$ if and only if the forcing had uniformly bounded essential size in $W$. Every chain $W\subseteq W[c_0]\subseteq W[c_1]\subseteq \cdots$ of extensions adding Cohen reals is bounded above by $W[d]$ for some $W$-generic Cohen real $d$.

This article is based upon I talk I gave at the conference on Recent Developments in Axiomatic Set Theory at the Research Institute for Mathematical Sciences (RIMS) at Kyoto University, Japan in September, 2015, and I am extremely grateful to my Japanese hosts, especially Toshimichi Usuba, for supporting my research visit there and also at the CTFM conference at Tokyo Institute of Technology just preceding it. This article includes material adapted from section section 2 of Set-theoretic geology, joint with G. Fuchs, myself and J. Reitz, and also includes a theorem that was proved in a series of conversations I had with Giorgio Venturi at the Young Set Theory Workshop 2011 in Bonn and continuing at the London 2011 summer school on set theory at Birkbeck University London.

Upward countable closure in the generic multiverse of forcing to add a Cohen real

I’d like to discuss my theorem that the collection of models $M[c]$ obtained by adding an $M$-generic Cohen real $c$ over a fixed countable transitive model of set theory $M$ is upwardly countably closed, in the sense that every increasing countable chain has an upper bound.

I proved this theorem back in 2011, while at the Young Set Theory Workshop in Bonn and continuing at the London summer school on set theory, in a series of conversations with Giorgio Venturi. The argument has recently come up again in various discussions, and so let me give an account of it.

We consider the collection of all forcing extensions of a fixed countable transitive model $M$ of ZFC by the forcing to add a Cohen real, models of the form $M[c]$, and consider the question of whether every countable increasing chain of these models has an upper bound. The answer is yes!  (Actually, Giorgio wants to undertake forcing constructions by forcing over this collection of models to add a generic upward directed system of models; it follows from this theorem that this forcing is countably closed.) This theorem fits into the theme of my earlier post, Upward closure in the toy multiverse of all countable models of set theory, where similar theorems are proved, but not this one exactly.

Theorem. For any countable transitive model $M\models\text{ZFC}$, the collection of all forcing extensions $M[c]$ by adding an $M$-generic Cohen real is upward-countably closed. That is, for any countable tower of such forcing extensions
$$M[c_0]\subset M[c_1]\subset\cdots\subset M[c_n]\subset\cdots,$$
we may find an $M$-generic Cohen real $d$ such that $M[c_n]\subset M[d]$ for every natural number $n$.

Proof. $\newcommand\Add{\text{Add}}$Suppose that we have such a tower of forcing extensions $M[c_0]\subset M[c_1]\subset\cdots$, and so on. Note that if $M[b]\subset M[c]$ for $M$-generic Cohen reals $b$ and $c$, then $M[c]$ is a forcing extension of $M[b]$ by a quotient of the Cohen-real forcing. But since the Cohen forcing itself has a countable dense set, it follows that all such quotients also have a countable dense set, and so $M[c]$ is actually $M[b][b_1]$ for some $M[b]$-generic Cohen real $b_1$. Thus, we may view the tower as having the form:
$$M[b_0]\subset M[b_0\times b_1]\subset\cdots\subset M[b_0\times b_1\times\cdots\times b_n]\subset\cdots,$$
where now it follows that any finite collection of the reals $b_i$ are mutually $M$-generic.

Of course, we cannot expect in general that the real $\langle b_n\mid n<\omega\rangle$ is $M$-generic for $\Add(\omega,\omega)$, since this real may be very badly behaved. For example, the sequence of first-bits of the $b_n$’s may code a very naughty real $z$, which cannot be added by forcing over $M$ at all. So in general, we cannot allow that this sequence is added to the limit model $M[d]$. (See further discussion in my post Upward closure in the toy multiverse of all countable models of set theory.)

We shall instead undertake a construction by making finitely many changes to each real $b_n$, resulting in a real $d_n$, in such a way that the resulting combined real $d=\oplus_n d_n$ is $M$-generic for the forcing to add $\omega$-many Cohen reals, which is of course isomorphic to adding just one. To do this, let’s get a little more clear with our notation. We regard each $b_n$ as an element of Cantor space $2^\omega$, that is, an infinite binary sequence, and the corresponding filter associated with this real is the collection of finite initial segments of $b_n$, which will be an $M$-generic filter through the partial order of finite binary sequences $2^{<\omega}$, which is one of the standard isomorphic copies of Cohen forcing. We will think of $d$ as a binary function on the plane $d:\omega\times\omega\to 2$, where the $n^{th}$ slice $d_n$ is the corresponding function $\omega\to 2$ obtained by fixing the first coordinate to be $n$.

Now, we enumerate the countably many open dense subsets for the forcing to add a Cohen real $\omega\times\omega\to 2$ as $D_0$, $D_1$, and so on. There are only countably many such dense sets, because $M$ is countable. Now, we construct $d$ in stages. Before stage $n$, we will have completely specified $d_k$ for $k<n$, and we also may be committed to a finite condition $p_{n-1}$ in the forcing to add $\omega$ many Cohen reals. We consider the dense set $D_n$. We may factor $\Add(\omega,\omega)$ as $\Add(\omega,n)\times\Add(\omega,[n,\omega))$. Since $d_0\times\cdots\times d_{n-1}$ is actually $M$-generic (since these are finite modifications of the corresponding $b_k$’s, which are mutually $M$-generic, it follows that there is some finite extension of our condition $p_{n-1}$ to a condition $p_n\in D_n$, which is compatible with $d_0\times\cdots\times d_{n-1}$. Let $d_n$ be the same as $b_n$, except finitely modified to be compatible with $p_n$. In this way, our final real $\oplus_n d_n$ will contain all the conditions $p_n$, and therefore be $M$-generic for $\Add(\omega,\omega)$, yet every $b_n$ will differ only finitely from $d_n$ and hence be an element of $M[d]$. So we have $M[b_0]\cdots[b_n]\subset M[d]$, and we have found our upper bound. QED

Notice that the real $d$ we construct is not only $M$-generic, but also $M[c_n]$-generic for every $n$.

My related post, Upward closure in the toy multiverse of all countable models of set theory, which is based on material in my paper Set-theoretic geology, discusses some similar results.

Upward closure in the generic multiverse of a countable model of set theory, RIMS 2015, Kyoto, Japan

Philosophers Walk Kyoto Japan (summer)This will be a talk for the conference Recent Developments in Axiomatic Set Theory at the Research Institute for Mathematical Sciences (RIMS) in Kyoto, Japan, September 16-18, 2015.

Abstract. Consider a countable model of set theory amongst its forcing extensions, the ground models of those extensions, the extensions of those models and so on, closing under the operations of forcing extension and ground model.  This collection is known as the generic multiverse of the original model.  I shall present a number of upward-oriented closure results in this context. For example, for a long-known negative result, it is a fun exercise to construct forcing extensions $M[c]$ and $M[d]$ of a given countable model of set theory $M$, each by adding an $M$-generic Cohen real, which cannot be amalgamated, in the sense that there is no common extension model $N$ that contains both $M[c]$ and $M[d]$ and has the same ordinals as $M$. On the positive side, however, any increasing sequence of extensions $M[G_0]\subset M[G_1]\subset M[G_2]\subset\cdots$, by forcing of uniformly bounded size in $M$, has an upper bound in a single forcing extension $M[G]$. (Note that one cannot generally have the sequence $\langle G_n\mid n<\omega\rangle$ in $M[G]$, so a naive approach to this will fail.)  I shall discuss these and related results, many of which appear in the “brief upward glance” section of my recent paper:  G. Fuchs, J. D. Hamkins and J. Reitz, Set-theoretic geology.


Universality and embeddability amongst the models of set theory, CTFM 2015, Tokyo, Japan

Tokyo Institute of TechnologyThis will be a talk for the Computability Theory and Foundations of Mathematics conference at the Tokyo Institute of Technology, September 7-11, 2015.  The conference is held in celebration of Professor Kazuyuki Tanaka’s 60th birthday.

Abstract. Recent results on the embeddability phenomenon and universality amongst the models of set theory are an appealing blend of ideas from set theory, model theory and computability theory. Central questions remain open.

A surprisingly vigorous embeddability phenomenon has recently been uncovered amongst the countable models of set theory. It turns out, for instance, that among these models embeddability is linear: for any two countable models of set theory, one of them embeds into the other. Indeed, one countable model of set theory $M$ embeds into another $N$ just in case the ordinals of $M$ order-embed into the ordinals of $N$. This leads to many surprising instances of embeddability: every forcing extension of a countable model of set theory, for example, embeds into its ground model, and every countable model of set theory, including every well-founded model, embeds into its own constructible universe.

V to LAlthough the embedding concept here is the usual model-theoretic embedding concept for relational structures, namely, a map $j:M\to N$ for which $x\in^M y$ if and only if $j(x)\in^N j(y)$, it is a weaker embedding concept than is usually considered in set theory, where embeddings are often elementary and typically at least $\Delta_0$-elementary. Indeed, the embeddability result is surprising precisely because we can easily prove that in many of these instances, there can be no $\Delta_0$-elementary embedding.

The proof of the embedding theorem makes use of universality ideas in digraph combinatorics, including an acyclic version of the countable random digraph, the countable random $\mathbb{Q}$-graded digraph, and higher analogues arising as uncountable Fraïssé limits, leading to the hypnagogic digraph, a universal homogeneous graded acyclic class digraph, closely connected with the surreal numbers. Thus, the methods are a blend of ideas from set theory, model theory and computability theory.

Results from Incomparable $\omega_1$-like models of set theory show that the embedding phenomenon does not generally extend to uncountable models. Current joint work of myself, Aspero, Hayut, Magidor and Woodin is concerned with questions on the extent to which the embeddings arising in the embedding theorem can exist as classes inside the models in question. Since the embeddings of the theorem are constructed externally to the model, by means of a back-and-forth-style construction, there is little reason to expect, for example, that the resulting embedding $j:M\to L^M$ should be a class in $M$. Yet, it has not yet known how to refute in ZFC the existence of a class embedding $j:V\to L$ when $V\neq L$. However, many partial results are known. For example, if the GCH fails at an uncountable cardinal, if $0^\sharp$ exists, or if the universe is a nontrivial forcing extension of some ground model, then there is no embedding $j:V\to L$. Meanwhile, it is consistent that there are non-constructible reals, yet $\langle P(\omega),\in\rangle$ embeds into $\langle P(\omega)^L,\in\rangle$.

CFTM 2015 extended abstract | Article | CFTM | Slides

Embeddings of the universe into the constructible universe, current state of knowledge, CUNY Set Theory Seminar, March 2015

This will be a talk for the CUNY Set Theory Seminar, March 6, 2015.

I shall describe the current state of knowledge concerning the question of whether there can be an embedding of the set-theoretic universe into the constructible universe.

V to L

Question.(Hamkins) Can there be an embedding $j:V\to L$ of the set-theoretic universe $V$ into the constructible universe $L$, when $V\neq L$?

The notion of embedding here is merely that $$x\in y\iff j(x)\in j(y),$$ and such a map need not be elementary nor even $\Delta_0$-elementary. It is not difficult to see that there can generally be no $\Delta_0$-elementary embedding $j:V\to L$, when $V\neq L$.

Nevertheless, the question arises very naturally in the context of my previous work on the embeddability phenomenon, Every countable model of set theory embeds into its own constructible universe, where the title theorem is the following.

Theorem.(Hamkins) Every countable model of set theory $\langle M,\in^M\rangle$, including every countable transitive model of set theory, has an embedding $j:\langle M,\in^M\rangle\to\langle L^M,\in^M\rangle$ into its own constructible universe.

The methods of proof also established that the countable models of set theory are linearly pre-ordered by embeddability: given any two models, one of them embeds into the other; or equivalently, one of them is isomorphic to a submodel of the other. Indeed, one model $\langle M,\in^M\rangle$ embeds into another $\langle N,\in^N\rangle$ just in case the ordinals of the first $\text{Ord}^M$ order-embed into the ordinals of the second $\text{Ord}^N$. (And this implies the theorem above.)

In the proof of that theorem, the embeddings $j:M\to L^M$ are defined completely externally to $M$, and so it was natural to wonder to what extent such an embedding might be accessible inside $M$. And I realized that I could not generally refute the possibility that such a $j$ might even be a class in $M$.

Currently, the question remains open, but we have some partial progress, and have settled it in a number of cases, including the following, on which I’ll speak:

  • If there is an embedding $j:V\to L$, then for a proper class club of cardinals $\lambda$, we have $(2^\lambda)^V=(\lambda^+)^L$.
  • If $0^\sharp$ exists, then there is no embedding $j:V\to L$.
  • If $0^\sharp$ exists, then there is no embedding $j:V\to L$ and indeed no embedding $j:P(\omega)\to L$.
  • If there is an embedding $j:V\to L$, then the GCH holds above $\aleph_0$.
  • In the forcing extension $V[G]$ obtained by adding $\omega_1$ many Cohen reals (or more), there is no embedding $j:V[G]\to L$, and indeed, no $j:P(\omega)^{V[G]}\to V$. More generally, after adding $\kappa^+$ many Cohen subsets to $\kappa$, for any regular cardinal $\kappa$, then in $V[G]$ there is no $j:P(\kappa)\to V$.
  • If $V$ is a nontrivial set-forcing extension of an inner model $M$, then there is no embedding $j:V\to M$. Indeed, there is no embedding $j:P(\kappa^+)\to M$, if the forcing has size $\kappa$. In particular, if $V$ is a nontrivial forcing extension, then there is no embedding $j:V\to L$.
  • Every countable set $A$ has an embedding $j:A\to L$.

This is joint work of myself, W. Hugh Woodin, Menachem Magidor, with contributions also by David Aspero, Ralf Schindler and Yair Hayut.

See my related MathOverflow question: Can there be an embedding $j:V\to L$ from the set-theoretic universe $V$ to the constructible universe $L$, when $V\neq L$?

Talk Abstract

Incomparable $\omega_1$-like models of set theory

[bibtex key=FuchsGitmanHamkins2017:IncomparableOmega1-likeModelsOfSetTheory]

This is joint work with Gunter Fuchs and Victoria Gitman.

Abstract. We show that the analogues of the Hamkins embedding theorems, proved for the countable models of set theory, do not hold when extended to the uncountable realm of $\omega_1$-like models of set theory. Specifically, under the $\diamondsuit$ hypothesis and suitable consistency assumptions, we show that there is a family of $2^{\omega_1}$ many $\omega_1$-like models of $\text{ZFC}$, all with the same ordinals, that are pairwise incomparable under embeddability; there can be a transitive $\omega_1$-like model of ZFC that does not embed into its own constructible universe; and there can be an $\omega_1$-like model of PA whose structure of hereditarily finite sets is not universal for the $\omega_1$-like models of set theory.

In this article, we consider the question of whether the embedding theorems of my article, Every countable model of set theory embeds into its own constructible universe, which concern the countable models of set theory, might extend to the realm of uncountable models. Specifically, in that paper I had proved that (1) any two countable models of set theory are comparable by embeddability; indeed, (2) one countable model of set theory embeds into another just in case the ordinals of the first order-embed into the ordinals of the second; consequently, (3) every countable model of set theory embeds into its own constructible universe; and furthermore, (4) every countable model of set theory embeds into the hereditarily finite sets $\langle\text{HF},{\in}\rangle^M$ of any nonstandard model of arithmetic $M\models\text{PA}$. The question we consider here is, do the analogous results hold for uncountable models? Our answer is that they do not. Indeed, we shall prove that the corresponding statements do not hold even in the special case of $\omega_1$-like models of set theory, which otherwise among uncountable models often exhibit a special affinity with the countable models. Specifically, we shall construct large families of pairwise incomparable $\omega_1$-like models of set theory, even though they all have the same ordinals; we shall construct $\omega_1$-like models of set theory that do not embed into their own $L$; and we shall construct $\omega_1$-like models of \PA\ that are not universal for all $\omega_1$-like models of set theory.

The embedding theorems are expressed collectively in the theorem below. An embedding of one model $\langle M,{\in^M}\rangle$ of set theory into another $\langle N,{\in^N}\rangle$ is simply a function $j:M\to N$ for which $x\in^My\longleftrightarrow j(x)\in^Nj(y)$, for all $x,y\in M$, and in this case we say that $\langle M,{\in^M}\rangle$ embeds into $\langle N,{\in^N}\rangle$; note by extensionality that every embedding is injective. Thus, an embedding is simply an isomorphism of $\langle M,{\in^M}\rangle$ with its range, which is a submodel of $\langle N,{\in^N}\rangle$. Although this is the usual model-theoretic embedding concept for relational structures, the reader should note that it is a considerably weaker embedding concept than commonly encountered in set theory, because this kind of embedding need not be elementary nor even $\Delta_0$-elementary, although clearly every embedding as just defined is elementary at least for quantifier-free assertions. So we caution the reader not to assume a greater degree of elementarity beyond quantifier-free elementarity for the embeddings appearing in this paper.

Theorem.

1. For any two countable models of set theory $\langle M,\in^M\rangle$ and $\langle N,\in^N\rangle$, one of them embeds into the other.

2. Indeed, such an $\langle M,{\in^M}\rangle$ embeds into $\langle N,{\in^N}\rangle$ if and only if the ordinals of $M$ order-embed into the ordinals of $N$.

3. Consequently, every countable model $\langle M,\in^M\rangle$ of set theory embeds into its own constructible universe $\langle L^M,\in^M\rangle$.

4. Furthermore, every countable model of set theory embeds into the hereditary finite sets $\langle \text{HF},{\in}\rangle^M$ of any nonstandard model of arithmetic $M\models\text{PA}$. Indeed, $\text{HF}^M$ is universal for all countable acyclic binary relations.

One can begin to get an appreciation for the difference in embedding concepts by observing that ZFC proves that there is a nontrivial embedding $j:V\to V$, namely, the embedding recursively defined as follows $$j(y)=\bigl\{\ j(x)\ \mid\ x\in y\ \bigr\}\cup\bigl\{\{\emptyset,y\}\bigr\}.$$

We leave it as a fun exercise to verify that $x\in y\longleftrightarrow j(x)\in j(y)$ for the embedding $j$ defined by this recursion. (See my paper Every countable model of set theory embeds into its own constructible universe; but to give a hint here for the impatient, note that every $j(y)$ is nonempty and also $\emptyset\notin j(y)$; it follows that inside $j(y)$ we may identify the pair $\{\emptyset,y\}\in j(y)$; it follows that $j$ is injective and furthermore, the only way to have $j(x)\in j(y)$ is from $x\in y$.} Contrast this situation with the well-known Kunen inconsistency, which asserts that there can be no nontrivial $\Sigma_1$-elementary embedding $j:V\to V$. Similarly, the same recursive definition applied in $L$ leads to nontrivial embeddings $j:L\to L$, regardless of whether $0^\sharp$ exists. But again, the point is that embeddings are not necessarily even $\Delta_0$-elementary, and the familiar equivalence of the existence of $0^\sharp$ with a nontrivial “embedding” $j:L\to L$ actually requires a $\Delta_0$-elementary embedding.)

We find it interesting to note in contrast to the theorem above that there is no such embedding phenomenon in the the context of the countable models of Peano arithmetic (where an embedding of models of arithmetic is a function preserving all atomic formulas in the language of arithmetic). Perhaps the main reason for this is that embeddings between models of PA are automatically $\Delta_0$-elementary, as a consequence of the MRDP theorem, whereas this is not true for models of set theory, as the example above of the recursively defined embedding $j:V\to V$ shows, since this is an embedding, but it is not $\Delta_0$-elementary, in light of $j(\emptyset)\neq\emptyset$. For countable models of arithmetic $M,N\models\text{PA}$, one can show that there is an embedding $j:M\to N$ if and only if $N$ satisfies the $\Sigma_1$-theory of $M$ and the standard system of $M$ is contained in the standard system of $N$. It follows that there are many instances of incomparability. Meanwhile, it is a consequence of statement (4) that the embedding phenomenon recurs with the countable models of finite set theory $\text{ZFC}^{\neg\infty}$, that is, with $\langle\text{HF},{\in}\rangle^M$ for $M\models\text{PA}$, since all nonstandard such models are universal for all countable acyclic binary relations, and so in the context of countable models of $\text{ZFC}^{\neg\infty}$ there are precisely two bi-embeddability classes, namely, the standard model, which is initial, and the nonstandard countable models, which are universal.

Our main theorems are as follows.

Theorem.

1. If $\diamondsuit$ holds and ZFC is consistent, then there is a family $\mathcal C$ of $2^{\omega_1}$ many pairwise incomparable $\omega_1$-like models of ZFC, meaning that there is no embedding between any two distinct models in $\mathcal C$.

2. The models in statement (1) can be constructed so that their ordinals order-embed into each other and indeed, so that the ordinals of each model is a universal $\omega_1$-like linear order. If ZFC has an $\omega$-model, then the models of statement (1) can be constructed so as to have precisely the same ordinals.

3. If $\diamondsuit$ holds and ZFC is consistent, then there is an $\omega_1$-like model $M\models\text{ZFC}$ and an $\omega_1$-like model $N\models\text{PA}$ such that $M$ does not embed into $\langle\text{HF},{\in}\rangle^N$.

4. If there is a Mahlo cardinal, then in a forcing extension of $L$, there is a transitive $\omega_1$-like model $M\models\text{ZFC}$ that does not embed into its own constructible universe $L^M$.

Note that the size of the family $\mathcal C$ in statement (1) is as large as it could possibly be, given that any two elements in a pairwise incomparable family of structures must be non-isomorphic and there are at most $2^{\omega_1}$ many isomorphism types of $\omega_1$-like models of set theory or indeed of structures of size $\omega_1$ in any first-order finite language. Statement (2) shows that the models of the family $\mathcal C$ serve as $\omega_1$-like counterexamples to the assertion that one model of set theory embeds into another whenever the ordinals of the first order-embed into the ordinals of the second.