This will be a talk for the CUNY Logic Workshop, 17 November 2023.

Abstract. We consider the game of infinite Wordle as played on Baire space

Lecture notes are available:
This will be a talk for the CUNY Logic Workshop, 17 November 2023.
Abstract. We consider the game of infinite Wordle as played on Baire space
Lecture notes are available:
Welcome to the Infinite-Games Workshop, beginning Autumn 2023. The past ten years has seen an explosion in the study of infinite games, for researchers are now investigating diverse infinite games, including infinite chess, infinite draughts, infinite Hex, infinite Othello, infinite Go, indeed, we seem to have research projects involving infinitary analogues of all our familiar finite games. It is an emerging research area with many new exciting results.
This autumn, we shall set the workshop off with talks on several exciting new results in infinite chess, results which settle what had been some of the big open questions in the topic, including the question of the omega one of chess—the supremum of the ordinal game values that arise—as well as a finite position with game value
The workshop talks will be run at a high level of sophistication, aimed for the most part at serious researchers currently working in this emerging area. Mathematicians, computer scientists, infinitary game theorists, all serious researchers are welcome.
All talks will take place on Zoom at meeting 968 0186 3645 (password = latex code for the first uncountable ordinal). Contact dleonessi@gc.cuny.edu for further information.
Talks will be 90 minutes, with a workshop style welcoming questions. All talks will be recorded and placed on our YouTube channel. Talks will generally be held on Thursdays at 11:00 am New York time.
Add our calendar: Infinite-Games Workshop Calendar
The workshop is being organized by myself with the assistance of Davide Leonessi.
Davide Leonessi, The Graduate Center of the City University of New York
https://youtu.be/KZMDteLKFRI?si=_ZkSQmSlsIOmZJAx
Abstract: In this talk I will introduce open infinite games, and then define a natural generalization of draughts (checkers) to the infinite planar board. Infinite draughts is an open game, giving rise to the game value phenomenon and expressing it fully—the omega one of draughts is at least true
Joel David Hamkins, Professor of Logic, University of Notre Dame
Abstract: I shall give a general introduction to the subject and theory of infinite games, drawing upon diverse examples of infinitary games, but including also infinite chess, infinite Hex, infinite draughts, and others.
Ilkka Törmä, University of Turku, Finland
Abstract: Hex is a two-player game where the goal is to form a contiguous path of tokens from one side of a finite rectangular board to the opposite side. It is a famous classical result that Hex admits no draws: a completely filled board is a win for exactly one player. Infinite Hex is a variant introduced recently by Hamkins and Leonessi. It is played on the infinite two-dimensional grid
Andreas Tsevas, Physics, Ludwig Maximalians Universität München
Abstract: I present a position in infinite chess with finitely many pieces and a game value of
Matthew Bolan, University of Toronto
Abstract: For every countable ordinal
This will be a talk 16 October 2023 (Note new date!) for the Colloquium of the Harvard Center for Mathematical Sciences and Applications (CMSA).
Abstract: Let us explore the nature of strategic reasoning in infinite games, focusing on the cases of infinite Wordle and infinite Mastermind. The familiar game of Wordle extends naturally to longer words or even infinite words in an idealized language, and Mastermind similarly has natural infinitary analogues. What is the nature of play in these infinite games? Can the codebreaker play so as to win always at a finite stage of play? The analysis emerges gradually, and in the talk I shall begin slowly with some easy elementary observations. By the end, however, we shall engage with sophisticated ideas in descriptive set theory, a kind of infinitary information theory. Some assertions about the minimal size of winning sets of guesses, for example, turn out to be independent of the Zermelo-Fraenkel ZFC axioms of set theory. Some questions remain open.
This will be an online Zoom talk for the Boston Computaton Club, a graduate seminar in computer science at Northeastern University, 16 June 12pm EST (note change in date/time). Contact the organizers for the Zoom link.
Abstract: Many familiar finite games admit natural infinitary analogues, which may captivate and challenge us with sublime complexity. Shall we have a game of infinite chess? Or how about infinite draughts, infinite Hex, infinite Wordle, or infinite Sudoku? In the Chocolatier’s game, the Chocolatier serves up an infinite stream of delicious morsels, while the Glutton aims to eat every one. These games and others illustrate the often subtle strategic aspects of infinite games, and sometimes their downright logical peculiarity. Does every infinite game admit of a winning strategy? Must optimal play be in principle computable? Let us discover the fascinating nature of infinitary strategic thinking.
I am deeply honored to be invited by la Caixa Foundation to give a talk in “The Greats of Science” talk series, to be held 16 March 2023 at the CosmoCaixa Science Museum in Barcelona. This talk series aspires to host “prestigious figures who have contributed towards admirable milestones, studies or discoveries,” who will bring the science to a general audience, aiming to “give viewers the chance to explore the most relevant parts of contemporary sicence through the top scientists of the moment.” Previous speakers include Jane Goodall and nearly a dozen Nobel Prize winners since 2018.
I hope to rise to those high expectations!
My topic will be: Strategic thinking in infinite games.
Have you time for an infinite game? Many familiar finite games admit natural infinitary analogues, infinite games that may captivate and challenge us with intriguing patterns and sublime complexity. Shall we have a game of infinite chess? Or how about infinite draughts, infinite Hex, infinite Wordle, or infinite Sudoku? In the Chocolatier’s game, the Chocolatier serves up an infinite stream of delicious morsels, while the Glutton aims to eat every one. These games and others illustrate the often subtle strategic aspects of infinite games, and sometimes their downright logical peculiarity. Does every infinite game admit of a winning strategy? Must optimal play be in principle computable? Let us discover the fascinating nature of infinitary strategic thinking.
The theory builds upon the classical finitary result of Zermelo (1913), the fundamental theorem of finite games, which shows that in every finite two-player game of perfect information, one of the players must have a winning strategy or both players have draw-or-better strategies. This result extends to certain infinitary games by means of the ordinal game-value analysis, which assigns transfinite ordinal values
The Dutch Association for Logic and Philosophy of the Exact Sciences (VvL) has organized a major annual public online lecture series called LOGIC AT LARGE, where “well-known logicians give public audience talks to a wide audience,” and I am truly honored to have been invited to give this year’s lecture. This will be an online event, the second of the series, scheduled for May 31, 2022 (note change in date!), and further access details will be posted when they become available. Free registration can be made on the VvL Logic at Large web page.
Abstract. Many familiar finite games admit natural infinitary analogues, which often highlight intriguing issues in infinite game theory. Shall we have a game of infinite chess? Or how about infinite draughts, infinite Hex, infinite Go, infinite Wordle, or infinite Sudoku? Let me introduce these games and use them to illustrate various fascinating concepts in the theory of infinite games.
Come enjoy the lecture, and stay for the online socializing event afterwards. Hope to see you there!
[bibtex key=”Hamkins:Infinite-Wordle-and-the-mastermind-numbers”]
Download article at arXiv:2203.06804
Abstract. I consider the natural infinitary variations of the games Wordle and Mastermind, as well as their game-theoretic variations Absurdle and Madstermind, considering these games with infinitely long words and infinite color sequences and allowing transfinite game play. For each game, a secret codeword is hidden, which the codebreaker attempts to discover by making a series of guesses and receiving feedback as to their accuracy. In Wordle with words of any size from a finite alphabet of