This will be a talk for the Philosophy of Mathematics Seminar at the University of Oxford, 19 May 2025.

**Abstract**. I shall describe a simple historical thought experiment showing how our attitude toward the continuum hypothesis could easily have been very different than it is. If our mathematical history had been just a little different, I claim, if certain mathematical discoveries had been made in a slightly different order, then we would naturally view the continuum hypothesis as a fundamental axiom of set theory, necessary for mathematics and indeed indispensable for calculus.

I shall be speaking on my paper: How the continuum hypothesis could have been a fundamental axiom