- J. D. Hamkins, “The Vopěnka principle is inequivalent to but conservative over the Vopěnka scheme,” , 2016. (manuscript under review)
`@ARTICLE{Hamkins:The-Vopenka-principle-is-inequivalent-to-but-conservative-over-the-Vopenka-scheme, author = {Joel David Hamkins}, title = {The {Vop\v{e}nka} principle is inequivalent to but conservative over the {Vop\v{e}nka} scheme}, journal = {}, year = {2016}, volume = {}, number = {}, pages = {}, month = {}, note = {manuscript under review}, abstract = {}, keywords = {under-review}, source = {}, eprint = {1606.03778}, archivePrefix = {arXiv}, primaryClass = {math.LO}, url = {http://jdh.hamkins.org/vopenka-principle-vopenka-scheme}, }`

Abstract.The Vopěnka principle, which asserts that every proper class of first-order structures in a common language admits an elementary embedding between two of its members, is not equivalent over GBC to the first-order Vopěnka scheme, which makes the Vopěnka assertion only for the first-order definable classes of structures. Nevertheless, the two Vopěnka axioms are equiconsistent and they have exactly the same first-order consequences in the language of set theory. Specifically, GBC plus the Vopěnka principle is conservative over ZFC plus the Vopěnka scheme for first-order assertions in the language of set theory.

The *Vopěnka principle* is the assertion that for every proper class $\mathcal{M}$ of first-order $\mathcal{L}$-structures, for a set-sized language $\mathcal{L}$, there are distinct members of the class $M,N\in\mathcal{M}$ with an elementary embedding $j:M\to N$ between them. In quantifying over classes, this principle is a single assertion in the language of second-order set theory, and it makes sense to consider the Vopěnka principle in the context of a second-order set theory, such as Godel-Bernays set theory GBC, whose language allows one to quantify over classes. In this article, GBC includes the global axiom of choice.

In contrast, the first-order *Vopěnka scheme* makes the Vopěnka assertion only for the first-order definable classes $\mathcal{M}$ (allowing parameters). This theory can be expressed as a scheme of first-order statements, one for each possible definition of a class, and it makes sense to consider the Vopěnka scheme in Zermelo-Frankael ZFC set theory with the axiom of choice.

Because the Vopěnka principle is a second-order assertion, it does not make sense to refer to it in the context of ZFC set theory, whose first-order language does not allow quantification over classes; one typically retreats to the Vopěnka scheme in that context. The theme of this article is to investigate the precise meta-mathematical interactions between these two treatments of Vopěnka’s idea.

**Main Theorems.**

- If ZFC and the Vopěnka scheme holds, then there is a class forcing extension, adding classes but no sets, in which GBC and the Vopěnka scheme holds, but the Vopěnka principle fails.
- If ZFC and the Vopěnka scheme holds, then there is a class forcing extension, adding classes but no sets, in which GBC and the Vopěnka principle holds.

It follows that the Vopěnka principle VP and the Vopěnka scheme VS are not equivalent, but they are equiconsistent and indeed, they have the same first-order consequences.

**Corollaries.**

- Over GBC, the Vopěnka principle and the Vopěnka scheme, if consistent, are not equivalent.
- Nevertheless, the two Vopěnka axioms are equiconsistent over GBC.
- Indeed, the two Vopěnka axioms have exactly the same first-order consequences in the language of set theory. Specifically, GBC plus the Vopěnka principle is conservative over ZFC plus the Vopěnka scheme for assertions in the first-order language of set theory. $$\text{GBC}+\text{VP}\vdash\phi\qquad\text{if and only if}\qquad\text{ZFC}+\text{VS}\vdash\phi$$

These results grew out of my my answer to a MathOverflow question of Mike Shulman, Can Vopěnka’s principle be violated definably?, inquiring whether there would always be a definable counterexample to the Vopěnka principle, whenever it should happen to fail. I interpret the question as asking whether the Vopěnka scheme is necessarily equivalent to the Vopěnka principle, and the answer is negative.

The proof of the main theorem involves the concept of a *stretchable* set $g\subset\kappa$ for an $A$-extendible cardinal, which has the property that for every cardinal $\lambda>\kappa$ and every extension $h\subset\lambda$ with $h\cap\kappa=g$, there is an elementary embedding $j:\langle V_\lambda,\in,A\cap V_\lambda\rangle\to\langle V_\theta,\in,A\cap V_\theta\rangle$ such that $j(g)\cap\lambda=h$. Thus, the set $g$ can be stretched by an $A$-extendibility embedding so as to agree with any given $h$.