Erin Carmody

Erin Carmody successfully defended her dissertation under my supervision at the CUNY Graduate Center on April 24, 2015, and she earned her Ph.D. degree in May, 2015. Her dissertation follows the theme of killing them softly, proving many theorems of the form: given $\kappa$ with large cardinal property $A$, there is a forcing extension in which $\kappa$ no longer has property $A$, but still has large cardinal property $B$, which is very slightly weaker than $A$. Thus, she aims to enact very precise reductions in large cardinal strength of a given cardinal or class of large cardinals. In addition, as a part of the project, she developed transfinite meta-ordinal extensions of the degrees of hyper-inaccessibility and hyper-Mahloness, giving notions such as $(\Omega^{\omega^2+5}+\Omega^3\cdot\omega_1^2+\Omega+2)$-inaccessible among others.

Erin Carmody

G+ profile | math genealogy | MathOverflow profileNY Logic profilear$\chi$iv

Erin Carmody, “Forcing to change large cardinal strength,”  Ph.D. dissertation for The Graduate Center of the City University of New York, May, 2015.  ar$\chi$iv | PDF

Erin has accepted a professorship at Nebreska Wesleyan University for.the 2015-16 academic year.


 

Erin is also an accomplished artist, who has had art shows of her work in New York, and she has pieces for sale. Much of her work has an abstract or mathematical aspect, while some pieces exhibit a more emotional or personal nature. My wife and I have two of Erin’s paintings in our collection:
OceanIMG_0597

The weakly compact embedding property, Apter-Gitik celebration, CMU 2015

This will be a talk at the Conference in honor of Arthur W. Apter and Moti Gitik at Carnegie Mellon University, May 30-31, 2015.  I am pleased to be a part of this conference in honor of the 60th birthdays of two mathematicians whom I admire very much.

Moti GitikArthur W. Apter

 

 

 

 

 

 

 

 

Abstract. The weakly compact embedding property for a cardinal $\kappa$ is the assertion that for every transitive set $M$ of size $\kappa$ with $\kappa\in M$, there is a transitive set $N$ and an elementary embedding $j:M\to N$ with critical point $\kappa$. When $\kappa$ is inaccessible, this property is one of many equivalent characterizations of $\kappa$ being weakly compact, along with the weakly compact extension property, the tree property, the weakly compact filter property and many others. When $\kappa$ is not inaccessible, however, these various properties are no longer equivalent to each other, and it is interesting to sort out the relations between them. In particular, I shall consider the embedding property and these other properties in the case when $\kappa$ is not necessarily inaccessible, including interesting instances of the embedding property at cardinals below the continuum, with relations to cardinal characteristics of the continuum.

This is joint work with Brent Cody, Sean Cox, myself and Thomas Johnstone.

Slides | Article | Conference web site

Carnegie Mellon University, College of Fine Arts

Large cardinals need not be large in HOD

[bibtex key=ChengFriedmanHamkins2015:LargeCardinalsNeedNotBeLargeInHOD]

Abstract. We prove that large cardinals need not generally exhibit their large cardinal nature in HOD. For example, a supercompact cardinal $\kappa$ need not be weakly compact in HOD, and there can be a proper class of supercompact cardinals in $V$, none of them weakly compact in HOD, with no supercompact cardinals in HOD. Similar results hold for many other types of large cardinals, such as measurable and strong cardinals.

In this article, we prove that large cardinals need not generally exhibit their large cardinal nature in HOD, the inner model of hereditarily ordinal-definable sets, and there can be a divergence in strength between the large cardinals of the ambient set-theoretic universe $V$ and those of HOD. Our general theme concerns the questions:

Questions.

1. To what extent must a large cardinal in $V$ exhibit its large cardinal properties in HOD?

2. To what extent does the existence of large cardinals in $V$ imply the existence of large cardinals in HOD?

For large cardinal concepts beyond the weakest notions, we prove, the answers are generally negative. In Theorem 4, for example, we construct a model with a supercompact cardinal that is not weakly compact in HOD, and Theorem 9 extends this to a proper class of supercompact cardinals, none of which is weakly compact in HOD, thereby providing some strongly negative instances of (1). The same model has a proper class of supercompact cardinals, but no supercompact cardinals in HOD, providing a negative instance of (2). The natural common strengthening of these situations would be a model with a proper class of supercompact cardinals, but no weakly compact cardinals in HOD. We were not able to arrange that situation, however, and furthermore it would be ruled out by Conjecture 13, an intriguing positive instance of (2) recently proposed by W. Hugh Woodin, namely, that if there is a supercompact cardinal, then there is a measurable cardinal in HOD. Many other natural possibilities, such as a proper class of measurable cardinals with no weakly compact cardinals in HOD, remain as open questions.

CUNY talkRutgers talk | Luminy talk

Large cardinals need not be large in HOD, International Workshop on Set Theory, CIRM, Luminy, September 2014

I shall speak at the 13th International Workshop on Set Theory, held at the CIRM Centre International de Rencontres Mathématiques in Luminy near Marseille, France, September 29 to October 3, 2014. 

Abstract.  I shall prove that large cardinals need not generally exhibit their large cardinal nature in HOD. For example, a supercompact cardinal need not be weakly compact in HOD, and there can be a proper class of supercompact cardinals in $V$, none of them weakly compact in HOD, with no supercompact cardinals in HOD. Similar results hold for many other types of large cardinals, such as measurable and strong cardinals. There are many open questions.

This talk will include joint work with Cheng Yong and Sy-David Friedman.

Article | Participants | Slides

Uniform $({\lt}\theta)$-supercompactness is equivalent to a coherent system of normal fine measures

$\newcommand\image{\mathrel{{}^{\prime\prime}}}$This post answers a question that had come up some time ago with Arthur Apter, and more recently with Philipp Schlicht and Arthur Apter.

Definition. A cardinal $\kappa$ is uniformly ${\lt}\theta$-supercompact if there is an embedding $j:V\to M$ having critical point $\kappa$, with $j(\kappa)>\theta$ and $M^{\lt\theta}\subset M$.

(Note:  This is typically stronger than merely asserting that $\kappa$ is $\gamma$-supercompact for every $\gamma<\theta$, a property which is commonly denoted ${\lt}\theta$-supercompact, so I use the adjective “uniformly” to highlight the distinction.)

Two easy observations are in order.  First, if $\theta$ is singular, then $\kappa$ is uniformly ${\lt}\theta$-supercompact if and only if $\kappa$ is $\theta$-supercompact, since the embedding $j:V\to M$ will have $j\image\lambda\in M$ for every $\lambda<\theta$, and we may assemble $j\image\theta$ from this inside $M$, using a sequence of length $\text{cof}(\theta)$. Second, in the successor case, $\kappa$ is uniformly ${\lt}\lambda^+$-supercompact if and only if $\kappa$ is $\lambda$-supercompact, since if $j:V\to M$ has $M^\lambda\subset M$, then it also has $M^{{\lt}\lambda^+}\subset M$. So we are mainly interested in the concept of uniform ${\lt}\theta$-supercompactness when $\theta$ is weakly inaccessible.

Definition. Let us say of a cardinal $\kappa$ that $\langle\mu_\lambda\mid\lambda<\theta\rangle$ is a coherent $\theta$-system of normal fine measures, if each $\mu_\lambda$ is a normal fine measure on $P_\kappa\lambda$, which cohere in the sense that if $\lambda<\delta<\theta$, then $\mu_\lambda\leq_{RK}\mu_\delta$, and more specifically $X\in\mu_\lambda$ if and only if $\{ \sigma\in P_\kappa\delta\mid \sigma\cap\lambda\in X\}\in\mu_\delta$.  In other words, $\mu_\lambda=f\ast\mu_\delta$, where $f:P_\kappa\delta\to P_\kappa\lambda$ is the function that chops off at $\lambda$, so that $f:\sigma\mapsto \sigma\cap\lambda$.

Theorem.  The following are equivalent, for any regular cardinals $\kappa\leq\theta$.

1. The cardinal $\kappa$ is uniformly ${\lt}\theta$-supercompact.

2. There is a coherent $\theta$-system of normal fine measures for $\kappa$.

Proof. The forward implication is easy, since if $j:V\to M$ has $M^{{\lt}\theta}\subset M$, then we may let $\mu_\lambda$ be the normal fine measure on $P_\kappa\lambda$ generated by $j\image\lambda$ as a seed, so that $X\in\mu_\lambda\iff j\image\lambda\in j(X)$.  Since the seeds $j\image\lambda$ cohere as initial segments, it follows that $\mu_\lambda\leq_{RK}\mu_\delta$ in the desired manner whenever $\lambda\lt\delta<\theta$.

Conversely, fix a coherent system $\langle\mu_\lambda\mid\lambda<\theta\rangle$ of normal fine measures. Let $j_\lambda:V\to M_\lambda$ be the ultrapower by $\mu_\lambda$. Every element of $M_\lambda$ has the form $j_\lambda(f)(j\image\lambda)$.  Because of coherence, we have an elementary embedding $k_{\lambda,\delta}:M_\lambda\to M_\delta$ defined by $$k_{\lambda,\delta}: j_\lambda(f)(j\image\lambda)\mapsto j_\delta(f)(j\image\lambda).$$ It is not difficult to check that these embeddings altogether form a commutative diagram, and so we may let $j:V\to M$ be the direct limit of the system, with corresponding embeddings $k_{\lambda,\theta}:M_\lambda\to M$.  The critical point of $k_{\lambda,\delta}$ and hence also $k_{\lambda,\theta}$ is larger than $\lambda$.  This embedding has critical point $\kappa$, and I claim that $M^{\lt\theta}\subset M$. To see this, suppose that $z_\alpha\in M$ for each $\alpha<\beta$ where $\beta<\theta$.  So $z_\alpha=k_{\lambda_\alpha,\theta}(z_\alpha^*)$ for some $z_\alpha^*\in M_{\lambda_\alpha}$. Since $\theta$ is regular, we may find $\lambda<\theta$ with $\lambda_\alpha\leq\lambda$ for all $\alpha<\beta$ and also $\beta\leq\lambda$, and so without loss we may assume $\lambda_\alpha=\lambda$ for all $\alpha<\beta$. Since $M_\lambda$ is closed under $\lambda$-sequences, it follows that $\vec z^*=\langle z_\alpha^*\mid\alpha<\beta\rangle\in M_\lambda$.  Applying $k_{\lambda,\theta}$ to $\vec z^*$ gives precisely the desired sequence $\vec z=\langle z_\alpha\mid\alpha<\beta\rangle$ inside $M$, showing this instance of $M^{{\lt}\theta}\subset M$. QED

The theorem does not extend to singular $\theta$.

Theorem.  If $\kappa$ is $\theta$-supercompact for a singular strong limit cardinal $\theta$ above $\kappa$, then there is a transitive inner model in which $\kappa$ has a coherent system $\langle\mu_\lambda\mid\lambda<\theta\rangle$  of normal fine measures, but $\kappa$ is not uniformly ${\lt}\theta$-supercompact.

Thus, the equivalence of the first theorem does not hold generally for singular $\theta$.

Proof.  Suppose that $\kappa$ is $\theta$-supercompact, where $\theta$ is a singular strong limit cardinal. Let $j:V\to M$ be a witnessing embedding, for which $\kappa$ is not $\theta$-supercompact in $M$ (use a Mitchell-minimal measure).  Since $\theta$ is singular, this means by the observation after the definition above that $\kappa$ is not uniformly ${\lt}\theta$-supercompact in $M$. But meanwhile, $\kappa$ does have a coherent system of normal fine ultrafilters in $M$, since the measures defined by $X\in\mu_\lambda\iff j\image\lambda\in j(X)$ form a coherent system just as in the theorem, and the sequence $\langle\mu_\lambda\mid\lambda<\theta\rangle$ is in $M$ by $\theta$-closure. QED

The point is that in the singular case, the argument shows only that the direct limit is ${\lt}\text{cof}(\theta)$-closed, which is not the same as ${\lt}\theta$-closed when $\theta$ is singular.

The example of singular $\theta$ also shows that $\kappa$ can be ${\lt}\theta$-supercompact without being uniformly ${\lt}\theta$-supercompact, since the latter would imply full $\theta$-supercompactness, when $\theta$ is singular, but the former does not. The same kind of reasoning separates uniform from non-uniform ${\lt}\theta$-supercompactness, even when $\theta$ is regular.

Theorem. If $\kappa$ is uniformly ${\lt}\theta$-supercompact for an inaccessible cardinal $\theta$, then there is a transitive inner model in which $\kappa$ is ${\lt}\theta$-supercompact, but not uniformly ${\lt}\theta$-supercompact.

Proof. Suppose that $\kappa$ is uniformly ${\lt}\theta$-supercompact, witnessed by embedding $j:V\to M$, with $M^{\lt\theta}\subset M$, and furthermore assume that $j(\kappa)$ is as small as possible among all such embeddings. It follows that there can be no coherent $\theta$-system of normal fine measures for $\kappa$ inside $M$, for if there were, the direct limit of the associated embedding would send $\kappa$ below $j(\kappa)$, which from the perspective of $M$ is a measurable cardinal far above $\kappa$ and $\theta$. But meanwhile, $\kappa$ is $\beta$-supercompact in $M$ for every $\beta<\theta$. Thus, $\kappa$ is ${\lt}\theta$-supercompact in $M$, but not uniformly ${\lt}\theta$-supercompact, and so the notions do not coincide. QED

Meanwhile, if $\theta$ is weakly compact, then the two notions do coincide. That is, if $\kappa$ is ${\lt}\theta$-supercompact (not necessarily uniformly), and $\theta$ is weakly compact, then in fact $\kappa$ is uniformly ${\lt}\theta$-supercompact, since one may consider a model $M$ of size $\theta$ with $\theta\in M$ and $V_\theta\subset M$, and apply a weak compactness embedding $j:M\to N$. The point is that in $N$, we get that $\kappa$ is actually $\theta$-supercompact in $N$, which provides a uniform sequence of measures below $\theta$.

Large cardinal indestructibility: two slick new proofs of prior results

$\newcommand\HOD{\text{HOD}}$

I’ve recently found two slick new proofs of some of my prior results on indestructibility, using the idea of an observation of Arthur Apter’s.  What he had noted is:

Observation. (Apter [1])  If $\kappa$ is a Laver indestructible supercompact cardinal, then $V_\kappa\subset\HOD$.  Indeed, $V_\kappa$ satisfies the continuum coding axiom CCA.

Proof. The continuum coding axiom asserts that every set of ordinals is coded into the GCH pattern (it follows that they are each coded unboundedly often). If $x\subset\kappa$ is any bounded set of ordinals, then let $\mathbb{Q}$ be the forcing to code $x$ into the GCH pattern at regular cardinals directly above $\kappa$. This forcing is ${\lt}\kappa$-directed closed, and so by our assumption, $\kappa$ remains supercompact and in particular $\Sigma_2$-reflecting in the extension $V[G]$. Since $x$ is coded into the GCH pattern of $V[G]$, it follows by reflection that $V_\kappa=V[G]_\kappa$ must also think that $x$ is coded, and so $V_\kappa\models\text{CCA}$. QED

First, what I noticed is that this immediately implies that small forcing ruins indestructibility:

Theorem. (Hamkins, Shelah [2], Hamkins [3]) After any nontrivial forcing of size less than $\kappa$, the cardinal $\kappa$ is no longer indestructibly supercompact, nor even indestructibly $\Sigma_2$-reflecting.

Proof.  Nontrivial small forcing $V[g]$ will add a new set of ordinals below $\kappa$, which will not be coded unboundedly often into the continuum function of $V[g]$, and so $V[g]_\kappa$ will not satisfy the CCA.  Hence, $\kappa$ will not be indestructibly $\Sigma_2$-reflecting there. QED

This argument can be seen as essentially related to Shelah’s 1998 argument, given in [2].

Second, I also noticed that a similar idea can be used to prove:

Theorem. (Bagaria, Hamkins, Tsaprounis, Usuba [4])  Superstrong and other large cardinals are never Laver indestructible.

Proof.  Suppose the superstrongness of $\kappa$ is indestructible. It follows by the observation that $V_\kappa$ satisfies the continuum coding axiom. Now force to add a $V$-generic Cohen subset $G\subset\kappa$.  If $\kappa$ were superstrong in $V[G]$, then there would be $j:V[G]\to M$ with $V[G]_{j(\kappa)}=M_{j(\kappa)}$. Since $G$ is not coded into the continuum function, $M_{j(\kappa)}$ does not satisfy the CCA.  This contradicts the elementarity $V_\kappa=V[G]_\kappa\prec M_{j(\kappa)}$. QED

The argument shows that even the $\Sigma_3$-extendibility of $\kappa$ is never Laver indestructible.

I would note, however, that the slick proof does not achieve the stronger result of [4], which is that superstrongness is never indestructible even by $\text{Add}(\kappa,1)$, and that after forcing to add a Cohen subset to $\kappa$ (among any of many other common forcing notions), the cardinal $\kappa$ is never $\Sigma_3$-extendible (and hence not superstrong, not weakly superstrong, and so on).  The slick proof above uses indestructibility by the coding forcing to get the CCA in $V_\kappa$, and it is not clear how one would argue that way to get these stronger results of [4].

[1] Arthur W. Apter and Shoshana Friedman. HOD-supercompactness, inestructibility, and level-by-level equivalence, to appear in Bulletin of the Polish Academy of Sciences (Mathematics).

[2] Joel David Hamkins, Saharon Shelah, Superdestructibility: A Dual to Laver’s Indestructibility,  J. Symbolic Logic, Volume 63, Issue 2 (1998), 549-554.

[3] Joel David Hamkins, Small forcing makes any cardinal superdestructible, J. Symbolic Logic, 63 (1998).

[4] Joan Bagaria, Joel David Hamkins, Konstantinos Tsaprounis, Toshimichi Usuba, Superstrong and other large cardinals are never Laver indestructible, to appear in the Archive of Math Logic (special issue in memory of Richard Laver).

Higher infinity and the foundations of mathematics, plenary General Public Lecture, AAAS, June, 2014

I have been invited to give a plenary General Public Lecture at the 95th annual meeting of the American Association for the Advancement of Science (Pacific Division), which will be held in Riverside, California, June 17-20, 2014.  The talk is sponsored by the BEST conference, which is meeting as a symposium at the larger AAAS conference.

This is truly a rare opportunity to communicate with a much wider community of scholars, to explain some of the central ideas and methods of set theory and the foundations of mathematics to a wider group of nonspecialist but mathematics-interested researchers. I hope to explain a little about the exciting goings-on in the foundations of mathematics.  Frankly, I feel deeply honored for the opportunity to represent my field in this way.

The talk will be aimed at a very general audience, the general public of the AAAS meeting, which is to say, mainly, scientists.  I also expect, however, that there will be a set-theory contingent present of participants from the BEST conference, which is a symposium at the conference — but I shall not take a stand here on whether mathematics is a science; you’ll have to come to my talk for that!

MissionInnPanoramaBestAbstract. Let me tell you the story of infinity and what is going on in the foundations of mathematics. For over a century, mathematicians have explored the soaring transfinite tower of different infinity concepts. Yet, fundamental questions at the foundation of this tower remain unsettled. Indeed, researchers in set theory and the foundations of mathematics have uncovered a pervasive independence phenomenon, whereby foundational mathematical questions are often in principle neither provable nor refutable. Presented with what may be these inherent limitations on our mathematical reasoning, we now face difficult philosophical questions on the nature of mathematical truth and the meaning of mathematical existence. Does mathematics need new axioms? Some mathematicians point the way the way towards what they describe as an ultimate theory of mathematical truth. Some adopt a scientific attitude, judging new mathematical axioms and theories by their predictions and explanatory power. Others propose a multiverse mathematical foundation with pluralist truth. In this talk, I shall take you from the basic concept of infinity and some simple paradoxes up to the continuum hypothesis and on to the higher infinity of large cardinals and the raging philosophical debates.

Slides | AAAS PD 2014 | Schedule | BEST | My other BEST talk

Strongly uplifting cardinals and the boldface resurrection axioms

[bibtex key=HamkinsJohnstone2017:StronglyUpliftingCardinalsAndBoldfaceResurrection]

Abstract. We introduce the strongly uplifting cardinals, which are equivalently characterized, we prove, as the superstrongly unfoldable cardinals and also as the almost hugely unfoldable cardinals, and we show that their existence is equiconsistent over ZFC with natural instances of the boldface resurrection axiom, such as the boldface resurrection axiom for proper forcing.

The strongly uplifting cardinals, which we introduce in this article, are a boldface analogue of the uplifting cardinals introduced in our previous paper, Resurrection axioms and uplifting cardinals, and are equivalently characterized as the superstrongly unfoldable cardinals and also as the almost hugely unfoldable cardinals. In consistency strength, these new large cardinals lie strictly above the weakly compact, totally indescribable and strongly unfoldable cardinals and strictly below the subtle cardinals, which in turn are weaker in consistency than the existence of $0^\sharp$. The robust diversity of equivalent characterizations of this new large cardinal concept enables constructions and techniques from much larger large cardinal contexts, such as Laver functions and forcing iterations with applications to forcing axioms. Using such methods, we prove that the existence of a strongly uplifting cardinal (or equivalently, a superstrongly unfoldable or almost hugely unfoldable cardinal) is equiconsistent over ZFC with natural instances of the boldface resurrection axioms, including the boldface resurrection axiom for proper forcing, for semi-proper forcing, for c.c.c. forcing and others. Thus, whereas in our prior article we proved that the existence of a mere uplifting cardinal is equiconsistent with natural instances of the (lightface) resurrection axioms, here we adapt both of these notions to the boldface context.

Definitions.

  • An inaccessible cardinal $\kappa$ is strongly uplifting if for every ordinal $\theta$ it is strongly $\theta$-uplifting, which is to say that for every $A\subset V_\kappa$ there is an inaccessible cardinal $\gamma\geq\theta$ and a set $A^*\subset V_\gamma$ such that $\langle V_\kappa,{\in},A\rangle\prec\langle V_\gamma,{\in},A^*\rangle$ is a proper elementary extension.
  • A cardinal $\kappa$ is superstrongly unfoldable, if for every ordinal $\theta$ it is superstrongly $\theta$-unfoldable, which is to say that for each $A\in H_{\kappa^+}$ there is a $\kappa$-model $M$ with $A\in M$ and a transitive set $N$ with an elementary embedding $j:M\to N$ with critical point $\kappa$ and $j(\kappa)\geq\theta$ and $V_{j(\kappa)}\subset N$.
  • A cardinal $\kappa$ is almost-hugely unfoldable, if for every ordinal $\theta$ it is almost-hugely $\theta$-unfoldable, which is to say that for each $A\in H_{\kappa^+}$ there is a $\kappa$-model $M$ with $A\in M$ and a transitive set $N$ with an elementary embedding $j:M\to N$ with critical point $\kappa$ and $j(\kappa)\geq\theta$ and $N^{<j(\kappa)}\subset N$.

Remarkably, these different-seeming large cardinal concepts turn out to be exactly equivalent to one another. A cardinal $\kappa$ is strongly uplifting if and only if it is superstrongly unfoldable, if and only if it is almost hugely unfoldable. Furthermore, we prove that the existence of such a cardinal is equiconsistent with several natural instances of the boldface resurrection axiom.

Theorem. The following theories are equiconsistent over ZFC.

  • There is a strongly uplifting cardinal.
  • There is a superstrongly unfoldable cardinal.
  • There is an almost hugely unfoldable cardinal.
  • The boldface resurrection axiom for all forcing.
  • The boldface resurrection axiom for proper forcing.
  • The boldface resurrection axiom for semi-proper forcing.
  • The boldface resurrection axiom for c.c.c. forcing.
  • The weak boldface resurrection axiom for countably-closed forcing, axiom-A forcing, proper forcing and semi-proper forcing, plus $\neg\text{CH}$.

 

 

Large cardinals need not be large in HOD, Rutgers logic seminar, April 2014

 

I shall speak at the Rutgers Logic Seminar on April 21, 2014, 5:00-6:20 pm, Room 705, Hill Center, Busch Campus, Rutgers University.

Abstract. I will show that large cardinals, such as measurable, strong and supercompact cardinals, need not exhibit their large cardinal nature in HOD.  Specifically, it is relatively consistent that a supercompact cardinal is not weakly compact in HOD, and one may construct models with a proper class of supercompact cardinals, none of them weakly compact in HOD.  This is current joint work with Cheng Yong.

Article

Large cardinals need not be large in HOD, CUNY Set Theory Seminar, January 2014

This will be a talk for the CUNY Set Theory Seminar, January 31, 2014, 10:00 am.

Abstract. I will demonstrate that a large cardinal need not exhibit its large cardinal nature in HOD. I will begin with the example of a measurable cardinal that is not measurable in HOD. After this, I will describe how to force a more extreme divergence.  For example, among other possibilities, it is relatively consistent that there is a supercompact cardinal that is not weakly compact in HOD. This is very recent joint work with Cheng Yong.

Article

Superstrong and other large cardinals are never Laver indestructible, ASL 2014, Boulder, May 2014

The Flatirons, Boulder, ColoradoThis will be an invited talk at the ASL 2014 North American Annual Meeting (May 19-22, 2014) in the special session Set Theory in Honor of Rich Laver, organized by Bill Mitchell and Jean Larson.

Abstract.  The large cardinal indestructibility phenomenon, discovered by Richard Laver with his seminal result on supercompact cardinals, is by now often seen as pervasive in the large cardinal hierarchy. Nevertheless, a new never-indestrucible phenomenon has emerged.  Superstrong cardinals, for example, are never Laver indestructible.  Similarly, almost huge cardinals, huge cardinals, superhuge cardinals, rank-into-rank cardinals, extendible cardinals, 1-extendible cardinals, 0-extendible cardinals, weakly superstrong cardinals, uplifting cardinals, pseudo-uplifting cardinals, superstrongly unfoldable cardinals, $\Sigma_n$-reflecting cardinals, $\Sigma_n$-correct cardinals and $\Sigma_n$-extendible cardinals (all for $n\geq 3$) are never Laver indestructible.  The proof involves a detailed technical analysis of the complexity of the definition in Laver’s theorem on the definability of the ground model, thereby involving and extending results in set-theoretic geology.  This is joint work between myself and Joan Bagaria, Kostas Tasprounis and Toshimichi Usuba.

Article | Slides

Exploring the Frontiers of Incompleteness, Harvard, August 2013

I will be participating in the culminating workshop of the Exploring the Frontiers of Incompleteness conference series at Harvard University, to take place August 31-September 1, 2013.  Rather than conference talks, the program will consist of extended discussion sessions by the participants of the year-long series, with the discussion framed by very brief summary presentations.  Peter Koellner asked me to prepare such a presentation on the multiverse conception, and you can see the slides in The multiverse perspective in set theory (Slides).

My previous EFI talk was The multiverse perspective on determinateness in set theory, based in part on my paper The set-theoretical multiverse.

Resurrection axioms and uplifting cardinals

[bibtex key=HamkinsJohnstone2014:ResurrectionAxiomsAndUpliftingCardinals]

Abstract. We introduce the resurrection axioms, a new class of forcing axioms, and the uplifting cardinals, a new large cardinal notion, and prove that various instances of the resurrection axioms are equiconsistent over ZFC with the existence of uplifting cardinal.

Many classical forcing axioms can be viewed, at least informally, as the claim that the universe is existentially closed in its forcing extensions, for the axioms generally assert that certain kinds of filters, which could exist in a forcing extension $V[G]$, exist already in $V$. In several instances this informal perspective is realized more formally: Martin’s axiom is equivalent to the assertion that $H_{\frak{c}}$ is existentially closed in all c.c.c. forcing extensions of the universe, meaning that $H_{\frak{c}}\prec_{\Sigma_1}V[G]$ for all such extensions; the bounded proper forcing axiom is equivalent to the assertion that $H_{\omega_2}$ is existentially closed in all proper forcing extensions, or $H_{\omega_2}\prec_{\Sigma_1}V[G]$; and there are other similar instances.

In model theory, a submodel $M\subset N$ is existentially closed in $N$ if existential assertions true in $N$ about parameters in $M$ are true already in $M$, that is, if $M$ is a $\Sigma_1$-elementary substructure of $N$, which we write as $M\prec_{\Sigma_1} N$. Furthermore, in a general model-theoretic setting, existential closure is tightly connected with resurrection, the theme of this article.

Elementary Fact. If $\mathcal{M}$ is a submodel of $\mathcal{N}$, then the following are equivalent.

  1. The model $\mathcal{M}$ is existentially closed in $\mathcal{N}$.
  2. $\mathcal{M}\subset \mathcal{N}$ has resurrection. That is, there is a further extension $\mathcal{M}\subset\mathcal{N}\subset\mathcal{M}^+$ for which $\mathcal{M}\prec\mathcal{M}^+$.

We call this resurrection because although certain truths in $\mathcal{M}$ may no longer hold in the extension $\mathcal{N}$, these truths are nevertheless revived in light of $\mathcal{M}\prec\mathcal{M}^+$ in the further extension to $\mathcal{M}^+$.

In the context of forcing axioms, we are more interested in the case of forcing extensions than in the kind of arbitrary extension $\mathcal{M}^+$ arising in the fact, and in this context the equivalence of (1) and (2) breaks own, although the converse implication $(2)\to(1)$ always holds, and every instance of resurrection implies the corresponding instance of existential closure. This key observation leads us to the main unifying theme of this article, the idea that

resurrection may allow us to formulate more robust forcing axioms 

than existential closure or than combinatorial assertions about filters and dense sets. We therefore introduce in this paper a spectrum of new forcing axioms utilizing the resurrection concept.

Main Definition. Let $\Gamma$ be a fixed definable class of forcing notions.

  1. The resurrection axiom $\text{RA}(\Gamma)$ is the assertion that for every forcing notion $\mathbb{Q}\in\Gamma$ there is further forcing $\mathbb{R}$, with $\vdash_{\mathbb{Q}}\mathbb{R}\in\Gamma$, such that if $g\ast h\subset\mathbb{Q}\ast\mathbb{R}$ is $V$-generic, then $H_{\frak{c}}\prec H_{\frak{c}}^{V[g\ast h]}$.
  2. The weak resurrection axiom $\text{wRA}(\Gamma)$ is the assertion that for every $\mathbb{Q}\in\Gamma$ there is further forcing $\mathbb{R}$, such that if $g\ast h\subset\mathbb{Q}\ast\mathbb{R}$ is $V$-generic, then $H_{\frak{c}}\prec H_{\frak{c}}^{V[g\ast h]}$.

The main result is to prove that various formulations of the resurrection axioms are equiconsistent with the existence of an uplifting cardinal, where an inaccessible cardinal $\kappa$ is uplifting, if there are arbitrarily large inaccessible cardinals $\gamma$ for which $H_\kappa\prec H_\gamma$.  This is a rather weak large cardinal notion, having consistency strength strictly less than the existence of a Mahlo cardinal, which is traditionally considered to be very low in the large cardinal hierarchy.  One highlight of the article is our development of “the world’s smallest Laver function,” the Laver function concept for uplifting cardinals, and we perform an analogue of the Laver preparation in order to achieve the resurrection axiom for c.c.c. forcing.

Main Theorem. The following theories are equiconsistent over ZFC:

  1. There is an uplifting cardinal.
  2. $\text{RA}(\text{all})$.
  3. $\text{RA}(\text{ccc})$.
  4. $\text{RA}(\text{semiproper})+\neg\text{CH}$.
  5. $\text{RA}(\text{proper})+\neg\text{CH}$.
  6. For some countable ordinal $\alpha$, the axiom $\text{RA}(\alpha\text{-proper})+\neg\text{CH}$.
  7. $\text{RA}(\text{axiom-A})+\neg\text{CH}$.
  8. $\text{wRA}(\text{semiproper})+\neg\text{CH}$.
  9. $\text{wRA}(\text{proper})+\neg\text{CH}$.
  10. For some countable ordinal $\alpha$, the axiom $\text{wRA}(\alpha\text{-proper})+\neg\text{CH}$.
  11. $\text{wRA}(\text{axiom-A})+\neg\text{CH}$.
  12. $\text{wRA}(\text{countably closed})+\neg\text{CH}$.

The proof outline proceeds in two directions: on the one hand, the resurrection axioms generally imply that the continuum $\frak{c}$ is uplifting in $L$; and conversely, given any uplifting cardinal $\kappa$, we may perform a suitable lottery iteration of $\Gamma$ forcing to obtain the resurrection axiom for $\Gamma$ in a forcing extension with $\kappa=\frak{c}$.

In a follow-up article, currently nearing completion, we treat the boldface resurrection axioms, which allow a predicate $A\subset\frak{c}$ and ask for extensions of the form $\langle H_{\frak{c}},{\in},A\rangle\prec\langle H_{\frak{c}}^{V[g\ast h]},{\in},A^\ast\rangle$, for some $A^\ast\subset\frak{c}^{V[g\ast h]}$ in the extension.  In that article, we prove the equiconsistency of various formulations of boldface resurrection with the existence of a strongly uplifting cardinal, which we prove is the same as a superstrongly unfoldable cardinal.

Superstrong and other large cardinals are never Laver indestructible

[bibtex key=BagariaHamkinsTsaprounisUsuba2016:SuperstrongAndOtherLargeCardinalsAreNeverLaverIndestructible]

Abstract.  Superstrong cardinals are never Laver indestructible. Similarly, almost huge cardinals, huge cardinals, superhuge cardinals, rank-into-rank cardinals, extendible cardinals, $1$-extendible cardinals, $0$-extendible cardinals, weakly superstrong cardinals, uplifting cardinals, pseudo-uplifting cardinals, superstrongly unfoldable cardinals, $\Sigma_n$-reflecting cardinals, $\Sigma_n$-correct cardinals and $\Sigma_n$-extendible cardinals (all for $n\geq 3$) are never Laver indestructible. In fact, all these large cardinal properties are superdestructible: if $\kappa$ exhibits any of them, with corresponding target $\theta$, then in any forcing extension arising from nontrivial strategically ${\lt}\kappa$-closed forcing $\mathbb{Q}\in V_\theta$, the cardinal $\kappa$ will exhibit none of the large cardinal properties with target $\theta$ or larger.

The large cardinal indestructibility phenomenon, occurring when certain preparatory forcing makes a given large cardinal become necessarily preserved by any subsequent forcing from a large class of forcing notions, is pervasive in the large cardinal hierarchy. The phenomenon arose in Laver’s seminal result that any supercompact cardinal $\kappa$ can be made indestructible by ${\lt}\kappa$-directed closed forcing. It continued with the Gitik-Shelah treatment of strong cardinals; the universal indestructibility of Apter and myself, which produced simultaneous indestructibility for all weakly compact, measurable, strongly compact, supercompact cardinals and others; the lottery preparation, which applies generally to diverse large cardinals; work of Apter, Gitik and Sargsyan on indestructibility and the large-cardinal identity crises; the indestructibility of strongly unfoldable cardinals; the indestructibility of Vopenka’s principle; and diverse other treatments of large cardinal indestructibility. Based on these results, one might be tempted to the general conclusion that all the usual large cardinals can be made indestructible.

In this article, my co-authors and I temper that temptation by proving that certain kinds of large cardinals cannot be made nontrivially indestructible. Superstrong cardinals, we prove, are never Laver indestructible. Consequently, neither are almost huge cardinals, huge cardinals, superhuge cardinals, rank-into-rank cardinals, extendible cardinals and $1$-extendible cardinals, to name a few. Even the $0$-extendible cardinals are never indestructible, and neither are weakly superstrong cardinals, uplifting cardinals, pseudo-uplifting cardinals, strongly uplifting cardinals, superstrongly unfoldable cardinals, $\Sigma_n$-reflecting cardinals, $\Sigma_n$-correct cardinals and $\Sigma_n$-extendible cardinals, when $n\geq 3$. In fact, all these large cardinal properties are superdestructible, in the sense that if $\kappa$ exhibits any of them, with corresponding target $\theta$, then in any forcing extension arising from nontrivial strategically ${\lt}\kappa$-closed forcing $\mathbb{Q}\in V_\theta$, the cardinal $\kappa$ will exhibit none of the large cardinal properties with target $\theta$ or larger. Many quite ordinary forcing notions, which one might otherwise have expected to fall under the scope of an indestructibility result, will definitely ruin all these large cardinal properties. For example, adding a Cohen subset to any cardinal $\kappa$ will definitely prevent it from being superstrong—as well as preventing it from being uplifting, $\Sigma_3$-correct, $\Sigma_3$-extendible and so on with all the large cardinal properties mentioned above—in the forcing extension.

Main Theorem. 

  1. Superstrong cardinals are never Laver indestructible.
  2. Consequently, almost huge, huge, superhuge and rank-into-rank cardinals are never Laver indestructible.
  3. Similarly, extendible cardinals, $1$-extendible and even $0$-extendible cardinals are never Laver indestructible.
  4. Uplifting cardinals, pseudo-uplifting cardinals, weakly superstrong cardinals, superstrongly unfoldable cardinals and strongly uplifting cardinals are never Laver indestructible.
  5. $\Sigma_n$-reflecting and indeed $\Sigma_n$-correct cardinals, for each finite $n\geq 3$, are never Laver indestructible.
  6. Indeed—the strongest result here, because it is the weakest notion—$\Sigma_3$-extendible cardinals are never Laver indestructible.

In fact, each of these large cardinal properties is superdestructible. Namely, if $\kappa$ exhibits any of them, with corresponding target $\theta$, then in any forcing extension arising from nontrivial strategically ${\lt}\kappa$-closed forcing $\mathbb{Q}\in V_\theta$, the cardinal $\kappa$ will exhibit none of the mentioned large cardinal properties with target $\theta$ or larger.

The proof makes use of a detailed analysis of the complexity of the definition of the ground model in the forcing extension.  These results are, to my knowledge, the first applications of the ideas of set-theoretic geology not making direct references to set-theoretically geological concerns.

Theorem 10 in the article answers (the main case of) a question I had posed on MathOverflow, namely, Can a model of set theory be realized as a Cohen-subset forcing extension in two different ways, with different grounds and different cardinals?  I had been specifically interested there to know whether a cardinal $\kappa$ necessarily becomes definable after adding a Cohen subset to it, and theorem 10 shows indeed that it does:  after adding a Cohen subset to a cardinal, it becomes $\Sigma_3$-definable in the extension, and this fact can be seen as explaining the main theorem above.

Related MO question | CUNY talk

The least weakly compact cardinal can be unfoldable, weakly measurable and nearly $\theta$-supercompact

[bibtex key=CodyGitikHamkinsSchanker2015:LeastWeaklyCompact]

Abstract.   We prove from suitable large cardinal hypotheses that the least weakly compact cardinal can be unfoldable, weakly measurable and even nearly $\theta$-supercompact, for any desired $\theta$. In addition, we prove several global results showing how the entire class of weakly compact cardinals, a proper class, can be made to coincide with the class of unfoldable cardinals, with the class of weakly measurable cardinals or with the class of nearly $\theta_\kappa$-supercompact cardinals $\kappa$, for nearly any desired function $\kappa\mapsto\theta_\kappa$. These results answer several questions that had been open in the literature and extend to these large cardinals the identity-crises phenomenon, first identified by Magidor with the strongly compact cardinals.

In this article, we prove that the least weakly compact cardinal can exhibit any of several much stronger large cardinal properties. Namely, the least weakly compact cardinal can be unfoldable, weakly measurable and nearly $\theta$-supercompact for any desired $\theta$.

Main Theorem.  Assuming a suitable large cardinal hypothesis, the least weakly compact cardinal can be unfoldable, weakly measurable and even nearly $\theta$-supercompact, for any desired $\theta$.

Meanwhile, the least weakly compact cardinal can never exhibit these extra large cardinal properties in $L$, and indeed, the existence of a weakly measurable cardinal in the constructible universe is impossible. Furthermore, in each case the extra properties are strictly stronger than weak compactness in consistency strength.

We show in addition a more global result, that the entire class of weakly compact cardinals can be made to coincide with the class of unfoldable cardinals, with the class of weakly measurable cardinals, and with the class of nearly $\theta_\kappa$-supercompact cardinals $\kappa$, with enormous flexibility in the map $\kappa\mapsto\theta_\kappa$.

Our results therefore extend the `identity-crises’ phenomenon—first identified (and named) by Magidor—which occurs when a given large cardinal property can be made in various models to coincide either with much stronger or with much weaker large cardinal notions. Magidor had proved that the least strongly compact cardinal can be the least supercompact cardinal in one model of set theory and the least measurable cardinal in another. Here, we extend the phenomenon to weak measurability, partial near supercompactness and unfoldability. Specifically, the least weakly measurable cardinal coincides with the least measurable cardinal under the GCH, but it is the least weakly compact cardinal in our main theorem. Similarly, the least cardinal $\kappa$ that is nearly $\kappa^{+}$-supercompact is measurable with nontrivial Mitchell order under the GCH, but it is the least weakly compact cardinal here (and similar remarks apply to near $\kappa^{++}$-supercompactness and so on). The least unfoldable cardinal is strongly unfoldable in $L$, and therefore a $\Sigma_2$-reflecting limit of weakly compact cardinals there, but it is the least weakly compact cardinal in our main theorem. The global results of section 6 show just how malleable these notions are.