Tutorial on Boolean ultrapowers, BLAST 2015, Las Cruces, NM

I shall give a tutorial lecture series on Boolean ultrapowers, two or three lectures, at the BLAST conference in Las Cruces, New Mexico, January 5-9, 2015.  (The big AMS meeting in San Antonio, reportedly a quick flight, begins on the 10th.)

BLAST is a conference series focusing on

B = Boolean Algebras
L = Lattices, Algebraic and Quantum Logic
A = Universal Algebra
S = Set Theory
T = Set-theoretic and Point-free Topology

In this tutorial, I shall give a general introduction to the Boolean ultrapower construction.

Organ Mountains, NM, with snow

Boolean ultrapowers generalize the classical ultrapower construction on a power-set algebra to the context of an ultrafilter on an arbitrary complete Boolean algebra. Introduced by Vopěnka as a means of undertaking forcing constructions internally to ZFC, the method has many connections with forcing. Nevertheless, the Boolean ultrapower construction stands on its own as a general model-theoretic construction technique, and historically, researchers have come to the Boolean ultrapower concept from both set theory and model theory.  An emerging interest in Boolean ultrapowers arises from a focus on well-founded Boolean ultrapowers as large cardinal embeddings.

In this tutorial, we shall see that the Boolean ultrapower construction reveals that two central set-theoretic techniques–forcing and classical ultrapowers–are facets of a single underlying construction, namely, the Boolean ultrapower.  I shall provide a thorough introduction to the Boolean ultrapower construction, assuming only an elementary graduate student-level familiarity with set theory and the classical ultrapower and forcing techniques.

Article | Tutorial lecture notes  | Blast 2015BLAST 2013 | Boolean ultrapowers tutorial at YSTW Bonn, 2011

A natural strengthening of Kelley-Morse set theory, CUNY Logic Workshop, May 2014

This will be a talk for the CUNY Logic Workshop on May 2, 2014.

Abstract. I shall introduce a natural strengthening of Kelley-Morse set theory KM to the theory we denote KM+, by including a certain class collection principle, which holds in all the natural models usually provided for KM, but which is not actually provable, we show, in KM alone.  The absence of the class collection principle in KM reveals what can be seen as a fundamental weakness of this classical theory, showing it to be less robust than might have been supposed.  For example, KM proves neither the Łoś theorem nor the Gaifman lemma for (internal) ultrapowers of the universe, and furthermore KM is not necessarily preserved, we show, by such ultrapowers. Nevertheless, these weaknesses are corrected by strengthening it to the theory KM+. The talk will include a general elementary introduction to the various second-order set theories, such as Gödel-Bernays set theory and Kelley-Morse set theory, including a proof of the folklore fact that KM implies Con(ZFC). This is joint work with Victoria Gitman and Thomas Johnstone.

 

Transfinite game values in infinite chess and other infinite games, Hausdorff Center, Bonn, May 2014

Releasing the hordesI shall be very pleased to speak at the colloquium and workshop Infinity, computability, and metamathematics, celebrating the 60th birthdays of Peter Koepke and Philip Welch, held at the Hausdorff Center for Mathematics May 23-25, 2014 at the Universität Bonn.  My talk will be the Friday colloquium talk, for a general mathematical audience.

Abstract. I shall give a general introduction to the theory of infinite games, using infinite chess—chess played on an infinite edgeless chessboard—as a central example. Since chess, when won, is won at a finite stage of play, infinite chess is an example of what is known technically as an open game, and such games admit the theory of transfinite ordinal game values. I shall exhibit several interesting positions in infinite chess with very high transfinite game values. The precise value of the omega one of chess is an open mathematical question.

 

Slides | Schedule | Transfinite game values in infinite chess | The mate-in-n problem of infinite chess is decidable

Large cardinals need not be large in HOD, Rutgers logic seminar, April 2014

 

I shall speak at the Rutgers Logic Seminar on April 21, 2014, 5:00-6:20 pm, Room 705, Hill Center, Busch Campus, Rutgers University.

Abstract. I will show that large cardinals, such as measurable, strong and supercompact cardinals, need not exhibit their large cardinal nature in HOD.  Specifically, it is relatively consistent that a supercompact cardinal is not weakly compact in HOD, and one may construct models with a proper class of supercompact cardinals, none of them weakly compact in HOD.  This is current joint work with Cheng Yong.

Article

Large cardinals need not be large in HOD, CUNY Set Theory Seminar, January 2014

This will be a talk for the CUNY Set Theory Seminar, January 31, 2014, 10:00 am.

Abstract. I will demonstrate that a large cardinal need not exhibit its large cardinal nature in HOD. I will begin with the example of a measurable cardinal that is not measurable in HOD. After this, I will describe how to force a more extreme divergence.  For example, among other possibilities, it is relatively consistent that there is a supercompact cardinal that is not weakly compact in HOD. This is very recent joint work with Cheng Yong.

Article

Superstrong and other large cardinals are never Laver indestructible, ASL 2014, Boulder, May 2014

The Flatirons, Boulder, ColoradoThis will be an invited talk at the ASL 2014 North American Annual Meeting (May 19-22, 2014) in the special session Set Theory in Honor of Rich Laver, organized by Bill Mitchell and Jean Larson.

Abstract.  The large cardinal indestructibility phenomenon, discovered by Richard Laver with his seminal result on supercompact cardinals, is by now often seen as pervasive in the large cardinal hierarchy. Nevertheless, a new never-indestrucible phenomenon has emerged.  Superstrong cardinals, for example, are never Laver indestructible.  Similarly, almost huge cardinals, huge cardinals, superhuge cardinals, rank-into-rank cardinals, extendible cardinals, 1-extendible cardinals, 0-extendible cardinals, weakly superstrong cardinals, uplifting cardinals, pseudo-uplifting cardinals, superstrongly unfoldable cardinals, $\Sigma_n$-reflecting cardinals, $\Sigma_n$-correct cardinals and $\Sigma_n$-extendible cardinals (all for $n\geq 3$) are never Laver indestructible.  The proof involves a detailed technical analysis of the complexity of the definition in Laver’s theorem on the definability of the ground model, thereby involving and extending results in set-theoretic geology.  This is joint work between myself and Joan Bagaria, Kostas Tasprounis and Toshimichi Usuba.

Article | Slides

Universal structures, GC MathFest, February 2014

Midtown in WinterThis will be a talk for the CUNY Graduate Center MathFest, held on the afternoon of Februrary 4, 2014, intended for graduate-school-bound undergraduate students, including prospective students for the CUNY Graduate Center, giving them a chance to meet graduate students and faculty at the CUNY Graduate Center and see the kind of mathematics that is done here.

In this 30 minute talk, I’ll introduce the concept of a universal structure, with various examples, including the countable random graph, the surreal number line and the hypnagogic digraph.

MathFest Program/schedule

Satisfaction is not absolute, Dartmouth Logic Seminar, January 2014

dartmouth_campusThis will be a talk for the Dartmouth Logic Seminar on January 23rd, 2014.

Abstract. I will discuss a number of theorems showing that the satisfaction relation of first-order logic is less absolute than might have been supposed. Two models of set theory can have the same natural numbers, for example, and the same standard model of arithmetic $\langle\mathbb{N},{+},{\cdot},0,1,{\lt}\rangle$, yet disagree on their theories of arithmetic truth; two models of set theory can have the same natural numbers and a computable linear order in common, yet disagree on whether it is a well-order; two models of set theory can have the same natural numbers and the same reals, yet disagree on projective truth; two models of set theory can have a rank initial segment of the universe $\langle V_\delta,{\in}\rangle$ in common, yet disagree about whether it is a model of ZFC. The theorems are proved with elementary classical model-theoretic methods, and many of them can be considered folklore results in the subject of models of arithmetic.

Indefinite arithmetic truthOn the basis of these mathematical results, Ruizhi Yang (Fudan University, Shanghai) and I have argued that the definiteness of truth in a structure, such as with arithmetic truth in the standard model of arithmetic, cannot arise solely from the definiteness of the structure itself in which that truth resides; rather, it must be seen as a separate, higher-order ontological commitment.

Main article: Satisfaction is not absolute

Infinite chess and the theory of infinite games, Dartmouth Mathematics Colloquium, January 2014

Releasing the hordesThis will be a talk for the Dartmouth Mathematics Colloquium on January 23rd, 2014.

Dartmouth Green

Abstract. Using infinite chess as a central example—chess played on an infinite edgeless board—I shall give a general introduction to the theory of infinite games. Infinite chess is an example of what is called an open game, a potentially infinite game which when won is won at a finite stage of play, and every open game admits the theory of transfinite ordinal game values. These values provide a measure of the distance remaining to an actual victory, and when they are known, the game values provide a canonical winning strategy for the winning player. I shall exhibit

several interesting positions in infinite chess with high transfinite game values. The precise value of the omega one of chess, however, the supremum of all such ordinal game values, is an open mathematical question; in the case of infinite three-dimensional chess, meanwhile, Evans and I have proved that every countable ordinal arises as a game value. Infinite chess also illustrates an interesting engagement with computability issues. For example, there are computable infinite positions in infinite chess that are winning for white, provided that the players play according to a computable procedure of their own choosing, but which is no longer winning for white when non-computable play is allowed. Also, the mate-in-n problem for finite positions in infinite chess is computably decidable (joint work with Schlicht, Brumleve and myself), despite the high quantifier complexity of any straightforward representation of it. The talk will be generally accessible for mathematicians, particularly those with at least rudimentary knowledge of ordinals and of chess.

Poster | Slides (8mb) | Transfinite game values in infinite chess | The mate-in-n problem of infinite chess is decidable

Rubik's cube competition, CSI, November 14, 2013

Rubik's cube 2

Come and compete in the CSI Rubik’s cube competition!

November 14, 2013, College of Staten Island of CUNY, 1S-107, 2:30 pm.

Sponsored by MTH 339, and the CSI Math Club.

As a part of the undergraduate course in abstract algebra (MTH 339), which I am teaching this semester at the College of Staten Island, we shall hold a Rubik’s cube competition on November 14th.  In class, I have used the Rubik’s cube as a source of examples to explain various group-theoretic concepts, and I have encouraged the students to learn to solve the cube.  Several have now already mastered it, and there seems lately to be a lot of Rubik’s cube activity in the math department.  (I am giving extra credit for any student who can solve a scrambled cube in my office.)

Several students have learned how to solve the cube from the following video, which explains one of the layer-based solution methods:

Free New York Pizza!

The Competition.  On November 14, 2013, we will have the Rubik’s cube competition, with several rounds of competition, to see who can solve the cube the fastest.  Prizes will be awarded, and best of all, there will be free pizza!

Results Of the Competition

The event has now taken place. We had 15 competitors, from all around the College and beyond.  We organized two qualifying heats of 7 and 8 competitors, respectively, taking the top four from each qualtifying heat to form the quarterfinalist competitors. The top four of these formed the semifinalist competitors. And the top two of these headed off in the championship round.  The champion, Sam Obisanya, won all the rounds in which he competed, and his cube was a blaze of lightning color as he solved it.  Honorable mention goes especially to Oveen Joseph, who faced Sam in the championship round and who came out to the college from middle school I.S.72, where he is in the 7th grade, and also to Justin Mills, who had extremely fast times.

Quarterfinals:

Itiel Cohen (CSI math major)

William George (CSI math major)

Oveen Joseph (middle school I.S.72, 7th grade)

Wing Yang Law (CSI math major)

Justin Mills (CSI psychology major)

Mike Siozios (CSI math major)

Sam Obisanya (CSI nursing major)

James Yap (CSI math major)

Semifinals:

Oveen Joseph

Justin Mills

Sam Obisanya

James Yap

Championship round:

Oveen Joseph

Sam Obisanya

Final Champion:

 Sam Obisanya

Congratulations to our champion and to all the competitors.

Rubik's cube

 

Win the game of Nim! CSI Math Club, October, 2013

This will be a talk for the CSI Math Club on October 31, 2013 at 2:30 pm in room 1S-107.

DSC00074Abstract  Come and learn how to play and win the game of Nim!  The game has two players, faced with several small piles of blocks.  Each player, on their turn, can remove one or more blocks from one pile, but only one pile. (Removing a whole pile is fine.)  The player who removes the last block wins.  This simple-to-describe game is maddening for those who don’t know the secret mathematical winning strategy.  Come and learn the mathematical secret that will allow you to win every time against someone who doesn’t know it.

 

 

Address at the Dean's List Ceremony

As the designated faculty speaker, selected after nominations from all the various departments at the college, I made the following remarks, in full academic regalia, at the Dean’s List ceremony this evening at the College of Staten Island.

College of Staten IslandThank you very much to the Dean for the kind introduction.

I am pleased and honored to be here, amongst the elite of the College of Staten Island, students who have made the Dean’s list for academic accomplishment. You have proved yourselves in the challenges of academic life and you should be proud. I am proud of you.

You are our intellectual powers, engines of thought and reason. Probably your minds are running all the time—it does seem a little hot in here…

In the classic Wim Wenders film, “Wings of Desire,” some characters are able to hear and experience the thoughts of others. And although one ordinarily imagines a library as a place of quiet contemplation, in the film the library was a cacophy of voices, a hundred trains of thought running through, each audibly expressing the content of a person’s mind.

This is how I like to imagine the arena of the mind, lively and exciting.

But also playful. Perhaps I’m called on to offer some advice to you, and my advice is this: pursue an attitude of playful curiosity about your subject, whatever it is. Play with new ideas, explore all facets of them, going beyond whatever had been expected of you. You will be led to vast new lands of imagination. 

A while back, my son Horatio, in fourth grade at the time, showed me his math homework. His teacher had said, “I am thinking of a number. It has a 3 in the ten’s place. The digits add to 10. It is prime. What is my number?” Can anyone solve it? Yes, 37 is a solution, and Horatio also had found it. He asked me, “are there other solutions?”  Now perhaps an unimaginative person might think only of two-digit numbers, and in this case, 37 is the only solution. But with imagination, we can seek out larger possibilities. And indeed Horatio and I worked together at the cafe and realized that 433 is another solution, as well as 631 and 1531. I checked a table of prime numbers, and found that 10333 is also a solution, as is 100,333.  I began to wonder:  are there infinitely many solutions? I had no idea how to prove such a thing.

So I posted the question to one of the math Q & A sites, and it immediately rocketed to the top, getting thousands of views. Mathematicians all around the world were thinking about this playful version of my son’s homework problem. Some of these mathematicians wrote computer programs to find more and more
solutions; one young mathematician found all the solutions up to one hundred million, systematically. Another found enormous solutions, gigantic prime numbers, one with 416 digits (mostly zeros), which were also solutions of the problem. But with regard to whether there are infinitely many solutions or not, we still had no answer.  It turns out to be an open mathematical question;  nobody knows, and the question leads to deep number-theoretic waters. 

Another instance of playfulness began when I was a graduate student. A prominent visiting mathematician (Lenore Blum) gave a talk about the theory of infinitely precise computation, concerning computational devices able to undertake perfectly accurate real number arithmetic. After the talk, inspired, a group of us speculated about other infinitary notions of computability: what could or should one do with a computational device able to undertake infinitely many steps of computation? We played with the idea, and over several years a theory gradually emerged.  Although some of my research colleagues had discouraged me, I ignored them and continued to play with and develop my theory. In time, our ideas grew into a new theory of infinitary computation. We had invented the subject now known as infinite time Turing machines. Those playful ideas led to a new theory that is now studied around the world, with new masters theses written on it and Ph.D. dissertations written on it, and conferences focused on it; our original article now has hundreds of citations.

Play is not always easy. It took years of seriously hard work in the case I just mentioned; but essential to that work was play. So please play! Explore your ideas further, and see where they take you!

Thank you very much.

Satisfaction is not absolute, CUNY Logic Workshop, September 2013

This will be a talk for the CUNY Logic Workshop on September 27, 2013.

Abstract.  I will discuss a number of theorems showing that the satisfaction relation of first-order logic is less absolute than might have been supposed. Two models of set theory $M_1$ and $M_2$, for example, can agree on their natural numbers $\langle\mathbb{N},{+},{\cdot},0,1,{\lt}\rangle^{M_1}=\langle\mathbb{N},{+},{\cdot},0,1,{\lt}\rangle^{M_2}$, yet disagree on arithmetic truth: they have a sentence $\sigma$ in the language of arithmetic that $M_1$ thinks is true in the natural numbers, yet $M_2$ thinks $\neg\sigma$ there. Two models of set theory can agree on the natural numbers $\mathbb{N}$ and on the reals $\mathbb{R}$, yet disagree on projective truth. Two models of set theory can have the same natural numbers and have a computable linear order in common, yet disagree about whether this order is well-ordered. Two models of set theory can have a transitive rank initial segment $V_\delta$ in common, yet disagree about whether this $V_\delta$ is a model of ZFC. The theorems are proved with elementary classical methods.

This is joint work with Ruizhi Yang (Fudan University, Shanghai). We argue, on the basis of these mathematical results, that the definiteness of truth in a structure, such as with arithmetic truth in the standard model of arithmetic, cannot arise solely from the definiteness of the structure itself in which that truth resides; rather, it must be seen as a separate, higher-order ontological commitment.

Article

The role of the axiom of foundation in the Kunen inconsistency, CUNY September 2013

This will be a talk for the CUNY Set Theory Seminar on September 20, 2013 (date tentative).

Abstract. The axiom of foundation plays an interesting role in the Kunen inconsistency, the assertion that there is no nontrivial elementary embedding of the set-theoretic universe to itself, for the truth or falsity of the Kunen assertion depends on one’s specific anti-foundational stance.  The fact of the matter is that different anti-foundational theories come to different conclusions about this assertion.  On the one hand, it is relatively consistent with ZFC without foundation that the Kunen assertion fails, for there are models of  ZFC-F  in which there are definable nontrivial elementary embeddings $j:V\to V$. Indeed, in Boffa’s anti-foundational theory BAFA, the Kunen assertion is outright refutable, and in this theory there are numerous nontrivial elementary embeddings of the universe to itself. Meanwhile, on the other hand, Aczel’s anti-foundational theory GBC-F+AFA, as well as Scott’s theory GBC-F+SAFA and other anti-foundational theories, continue to prove the Kunen assertion, ruling out the existence of a nontrivial elementary embedding $j:V\to V$.

This talk covers very recent joint work with Emil Jeřábek, Ali Sadegh Daghighi and Mohammad Golshani, based on an interaction growing out of Ali’s question on MathOverflow, which lead to our recent article, The role of the axiom of foundation in the Kunen inconsistency.

Exploring the Frontiers of Incompleteness, Harvard, August 2013

I will be participating in the culminating workshop of the Exploring the Frontiers of Incompleteness conference series at Harvard University, to take place August 31-September 1, 2013.  Rather than conference talks, the program will consist of extended discussion sessions by the participants of the year-long series, with the discussion framed by very brief summary presentations.  Peter Koellner asked me to prepare such a presentation on the multiverse conception, and you can see the slides in The multiverse perspective in set theory (Slides).

My previous EFI talk was The multiverse perspective on determinateness in set theory, based in part on my paper The set-theoretical multiverse.