The continuum hypothesis and other set-theoretic ideas for non-set-theorists, CUNY Einstein Chair Seminar, April, 2015

At Dennis Sullivan’s request, I shall speak on set-theoretic topics, particularly the continuum hypothesis, for the Einstein Chair Mathematics Seminar at the CUNY Graduate Center, April 27, 2015, in two parts:

  • An introductory background talk at 11 am, Room GC 6417
  • The main talk at 2 – 4 pm, Room GC 6417

I look forward to what I hope will be an interesting and fruitful interaction. There will be coffee/tea and lunch between the two parts.

Abstract. I shall present several set-theoretic ideas for a non-set-theoretic mathematical audience, focusing particularly on the continuum hypothesis and related issues.

At the introductory background talk, in the morning (11 am), I shall discuss and prove the Cantor-Bendixson theorem, which asserts that every closed set of reals is the union of a countable set and a perfect set (a closed set with no isolated points), and explain how it led to Cantor’s development of the ordinal numbers and how it establishes that the continuum hypothesis holds for closed sets of reals. We’ll see that there are closed sets of arbitrarily large countable Cantor-Bendixson rank. We’ll talk about the ordinals, about $\omega_1$, the long line, and, time permitting, we’ll discuss Suslin’s hypothesis.

At the main talk, in the afternoon (2 pm), I’ll begin with a discussion of the continuum hypothesis, including an explanation of the history and logical status of this axiom with respect to the other axioms of set theory, and establish the connection between the continuum hypothesis and Freiling’s axiom of symmetry. I’ll explain the axiom of determinacy and some of its applications and its rich logical situation, connected with large cardinals. I’ll briefly mention the themes and goals of the subjects of cardinal characteristics of the continuum and of Borel equivalence relation theory.  If time permits, I’d like to explain some fun geometric decompositions of space that proceed in a transfinite recursion using the axiom of choice, mentioning the open questions concerning whether there can be such decompositions that are Borel.

Dennis has requested that at some point the discussion turn to the role of set theory in the foundation for mathematics, compared for example to that of category theory, and I would look forward to that. I would be prepared also to discuss the Feferman theory in comparison to Grothendieck’s axiom of universes, and other issues relating set theory to category theory.

The span of infinity, roundtable discussion at The Helix Center, October 2014

I was a panelist at The Span of Infinity, a roundtable discussion held at The Helix Center, at the New York Psychoanalytic Society & Institute, 247 E 82nd Street, on October 25, 2014, 2:30 – 4:30 pm.

The Helix Center describes the discussion topic as:

Perhaps no thing conceived in the mind has enjoyed a greater confluence of cosmological, mathematical, philosophical, psychological, and theological inquiry than the notion of the infinite. The epistemological tension between the concrete and the ideal, between the phenomenological and the ontological, is nowhere clearer in outline yet more obscure in content. These inherent paradoxes limn the vital, eternal questions we will explore about humankind’s place in the universe and the comprehensibility of existence.

The Helix Center Roundtable Series is described by:

Our roundtable format is designated the Theaetetus Table, an extempore discussion among five participants, all leaders in their respective fields, and named for the classical Greek mathematician and eponym for the Platonic dialogue investigating the nature of knowledge, who proved that there are five regular convex polyhedra, or Platonic solids. Each Theaetetus Table aspires to emulate the dialogue’s unhurried search for wisdom; and, like the five Platonic solids held to be the fundamental building blocks of the classical elements, the contributions of our five participants become the fundamental constituents of interdisciplinary insights emerging in the alchemy of the roundtable, insights that, in turn, transform the elemental thinking of those participants. The gathering of five discussants also symbolizes the five interrelated qualities of mind our interdisciplinary forums are intended to facilitate in our participants, and inculcate in our audience: curiosity, playfulness, inspiration, reflection, and wonder.

The video of the actual event is now available:

The theory of infinite games, with examples, including infinite chess

This will be a talk on April 30, 2013 for a joint meeting of the Yeshiva University Mathematics Club and the  Yeshiva University Philosophy Club.  The event will take place in 5:45 pm in Furst Hall, on the corner of Amsterdam Ave. and 185th St.

Abstract. I will give a general introduction to the theory of infinite games, suitable for mathematicians and philosophers.  What does it mean to play an infinitely long game? What does it mean to have a winning strategy for such a game?  Is there any reason to think that every game should have a winning strategy for one player or another?  Could there be a game, such that neither player has a way to force a win?  Must every computable game have a computable winning strategy?  I will present several game paradoxes and example infinitary games, including an infinitary version of the game of Nim, and several examples from infinite chess.

NYlogic entry | Yeshiva University | Infinite chess | Video