The covering reflection principle, Notre Dame Logic Seminar, February 2024

This will be a talk for the Notre Dame Logic Seminar on 6 February 2024, 2:00 pm.

Abstract. The principle of covering reflection holds of a cardinal $\kappa$ if for every structure $B$ in a countable first-order language there is a structure $A$ of size less than $\kappa$, such that $B$ is covered by elementary images of $A$ in $B$. Is there any such cardinal? Is the principle consistent? This is joint work with myself, Nai-Chung Hou, Andreas Lietz, and Farmer Schlutzenberg.

The Gödel incompleteness phenomenon, interview with Rahul Sam

Please enjoy my conversation with Rahul Sam for his podcast, a sweeping discussion of topics in the philosophy of mathematics—potentialism, pluralism, Gödel incompleteness, philosophy of set theory, large cardinals, and much more.

The Wordle and Absurdle numbers, CUNY Logic Workshop, November 2023

This will be a talk for the CUNY Logic Workshop, 17 November 2023.

Abstract. We consider the game of infinite Wordle as played on Baire space $\omega^\omega$. The codebreaker can win in finitely many moves against any countable dictionary $\Delta\subseteq\omega^\omega$, but not against the full dictionary of Baire space. The Wordle number is the size of the smallest dictionary admitting such a winning strategy for the codebreaker, the corresponding Wordle ideal is the ideal generated by these dictionaries, which under MA includes all dictionaries of size less than the continuum. The Absurdle number, meanwhile, is the size of the smallest dictionary admitting a winning strategy for the absurdist in the two-player variant, infinite Absurdle. In ZFC there are nondetermined Absurdle games, with neither player having a winning strategy, but if one drops the axiom of choice, then the principle of Absurdle determinacy has large cardinal consistency strength over ZF+DC. This is joint work in progress with Ben De Bondt (Paris). 

Lecture notes are available:

Natural Instances of Illfoundedness and Nonlinearity in the Hierarchy of Consistency Strength, Oxford Phil Math Seminar, May 2023

Abstract. There is an unexplained logical mystery in the foundations of mathematics, namely, our best and strongest mathematical theories seem to be linearly ordered and indeed well-ordered by consistency strength. Why should it be? The phenomenon is thought to carry significance for foundations, perhaps pointing us, some have argued, toward the ultimately correct mathematical theories, the “one road upward.” And yet, we know as a purely formal matter that the hierarchy of consistency strength is not well-ordered. It is ill-founded, densely ordered, and nonlinear. The statements commonly used to illustrate these features, however, are often dismissed as unnatural or as Gödelian trickery. In this talk, however, I aim to rebut that criticism by presenting a variety of natural hypotheses that reveal illfoundedness in consistency strength, density in the hierarchy of consistency strength, and incomparability in consistency strength. This will lead to discussion of the role and meaning of “natural” in the foundations of mathematics.

The meeting will be in person and online. Those who wish to attend via Zoom, please write to Daniel Isaacson.

Infinity, University of Notre Dame, Spring 2023

Infinity

Philosophy 20607 01 (32582)

University of Notre Dame                                                                              Spring 2023

Instructor: Joel David Hamkins, O’Hara Professor of Philosophy and Mathematics
3:30-4:45 Tuesdays + Thursdays, DeBartolo Hall 208

Course Description. This course will be a mathematical and philosophical exploration of infinity, covering a wide selection of topics illustrating this rich, fascinating concept—the mathematics and philosophy of the infinite.

Along the way, we shall find paradox and fun—and all my favorite elementary logic conundrums and puzzles. It will be part of my intention to reveal what I can of the quirky side of mathematics and logic in its connection with infinity, but with a keen eye open for when issues happen to engage with philosophically deeper foundational matters.

The lectures will be based on the chapters of my forthcoming book, The Book of Infinity, currently in preparation, and currently being serialized and made available on the Substack website as I explain below.

Topics. Among the topics we shall aim to discuss will be:

  • The Book of Numbers
  • Zeno’s paradox
  • The infinite coastline paradox
  • Supertasks
  • Largest number contest
  • The googol plex chitty bang stack hierarchy
  • Galileo’s Salviati on infinity
  • Hilbert’s Grand Hotel
  • The uncountable
  • How to count (to infinity and beyond!)
  • Slaying the Hydra
  • Transfinite recursion
  • The continuum hypothesis
  • The axiom of choice
  • Orders of infinity
  • The lattice of subsets of ℕ
  • Potential versus actual infinity
  • Confounding puzzles of infinity
  • Infinite liars
  • Infinite utilitarianism
  • Infinite computation
  • Infinite games
  • Indescribable numbers
  • Extremely remote events of enormous consequence
  • The sand reckoner
  • Paradox in high dimension
  • The outer limits of reason
  • Puzzles of epistemic logic and the problem of common knowledge

Mathematical background. The course will at times involve topics and concepts of a fundamentally mathematical nature, but no particular mathematical background or training will be assumed. Nevertheless, it is expected that students be open to mathematical thinking and ideas, and furthermore it is a core aim of the course to help develop the student’s mastery over various mathematical concepts connected with infinity.  

Readings. The lectures will be based on readings from the topic list above that will be made available on my Substack web page, Infinitely More. Readings for the topic list above will be gradually released there during the semester. Each reading will consist of a chapter essay my book-in-progress, The Book of Infinity, which is being serialized on the Substack site specifically for this course. In some weeks, there will be supplemental readings from other sources.

Student access. I will issue subscription invitations to the Substack site for all registered ND students using their ND email, with free access to the site during the semester, so that students can freely access the readings.  Students are free to manage their subscriptions however they see fit. Please inform me of any access issues. There are some excellent free Substack apps available for Apple iOS and Android for reading Substack content on a phone or other device.

Discussion forum. Students are welcome to participate in the discussion forums provided with the readings to discuss the topics, the questions, to post answer ideas, or engage in the discussion there. I shall try to participate myself by posting comments or hints.

Homework essays. Students are expected to engage fully with every topic covered in the class. Every chapter concludes with several Questions for Further Thought, with which the students should engage. It will be expected that students complete approximately half of the Questions for Further thought. Each question that is answered should be answered essay-style with a mini-essay of about half a page or more.

Extended essays. A student may choose at any time to answer one of the Questions for Further Thought more fully with a more extended essay of two or three pages, and in this case, other questions on that particular topic need not be engaged. Every student should plan to exercise this option at least twice during the semester.

Final exam.  There will be a final exam consisting of questions similar to those in the Questions for Further Thought, covering every topic that was covered in the course. The final grade will be based on the final exam and on the submitted homework solutions.

Open Invitation. Students outside of Notre Dame are welcome to follow along with the Infinity course, readings, and online discussion. Simply subscribe at Infinitely More, keep up with the readings and participate in the discussions we shall be having in the forums there.

Nonlinearity and illfoundedness in the hierarchy of large cardinal consistency strength

[bibtex key=”Hamkins:Nonlinearity-in-the-hierarchy-of-large-cardinal-consistency-strength”]

arXiv:2208.07445

Abstract. Many set theorists point to the linearity phenomenon in the hierarchy of consistency strength, by which natural theories tend to be linearly ordered and indeed well ordered by consistency strength. Why should it be linear? In this paper I present counterexamples, natural instances of nonlinearity and illfoundedness in the hierarchy of large cardinal consistency strength, as natural or as nearly natural as I can make them. I present diverse cautious enumerations of ZFC and large cardinal set theories, which exhibit incomparability and illfoundedness in consistency strength, and yet, I argue, are natural. I consider the philosophical role played by “natural” in the linearity phenomenon, arguing ultimately that we should abandon empty naturality talk and aim instead to make precise the mathematical and logical features we had found desirable.

Nonlinearity and illfoundedness in the hierarchy of consistency strength and the question of naturality, Italy (AILA), September 2022

This will be a talk for the meeting of The Italian Association for Logic and its Applications (AILA) in Caserta, Italy 12-15 September 2022.

Abstract. Set theorists and philosophers of mathematics often point to a mystery in the foundations of mathematics, namely, that our best and strongest mathematical theories seem to be linearly ordered and indeed well-ordered by consistency strength. Why should it be? The phenomenon is thought to carry profound significance for the philosophy of mathematics, perhaps pointing us toward the ultimately correct mathematical theories, the “one road upward.” And yet, we know as a purely formal matter that the hierarchy of consistency strength is not well-ordered. It is ill-founded, densely ordered, and nonlinear. The statements usually used to illustrate these features, however, are often dismissed as unnatural or as Gödelian trickery. In this talk, I aim to rebut that criticism by presenting a variety of natural hypotheses that reveal ill-foundedness in consistency strength, density in the hierarchy of consistency strength, and incomparability in consistency strength.

Categorical set theories, Munich, June 2021

This is a talk for the  group in logic and philosophy of language at the Munich Center for Mathematical Philosophy

24 June 2021, 4:15 pm Munich time (3:15 pm BST) on Zoom at 925 6562 2309 (contact Ursula Danninger office.leitgeb@lrz.uni-muenchen.de for password.)

Abstract. Zermelo famously proved that second-order ZFC is quasi-categorical—the models of this theory are precisely the rank-initial segments of the set-theoretic universe cut off at an inaccessible cardinal. Which are the fully categorical extensions of this theory? This question gives rise to the notion of categorical large cardinals, and opens the door to several puzzling philosophical issues, such as the conflict between categoricity as a fundamental value in mathematics and reflection principles in set theory. (This is joint work with Robin Solberg, Oxford.)

Nonlinearity in the hierarchy of large cardinal consistency strength

This is currently a draft version only of my article-in-progress on the topic of linearity in the hierarchy of consistency strength, especially with large cardinals. Comments are very welcome, since I am still writing the article. Please kindly send me comments by email or just post here.

This article will be the basis of the Weeks 7 & 8 discussion in the Graduate Philosophy of Logic seminar I am currently running with Volker Halbach at Oxford in Hilary term 2021.

I present instances of nonlinearity and illfoundedness in the hierarchy of large cardinal consistency strength—as natural or as nearly natural as I can make them—and consider philosophical aspects of the question of naturality with regard to this phenomenon.

It is a mystery often mentioned in the foundations of mathematics, a fundamental phenomenon to be explained, that our best and strongest mathematical theories seem to be linearly ordered and indeed well-ordered by consistency strength. Given any two of the familiar large cardinal hypotheses, for example, generally one of them will prove the consistency of the other.

Why should it be linear? Why should the large cardinal notions line up like this, when they often arise from completely different mathematical matters? Measurable cardinals arise from set-theoretic issues in measure theory; Ramsey cardinals generalize ideas in graph coloring combinatorics; compact cardinals arise with compactness properties of infinitary logic. Why should these disparate considerations lead to principles that are linearly related by direct implication and consistency strength?

The phenomenon is viewed by many in the philosophy of mathematics as significant in our quest for mathematical truth. In light of Gödel incompleteness, after all, we must eternally seek to strengthen even our best and strongest theories. Is the linear hierarchy of consistency strength directing us along the elusive path, the “one road upward” as John Steel describes it, toward the final, ultimate mathematical truth? That is the tantalizing possibility.

Meanwhile, we do know as a purely formal matter that the hierarchy of consistency strength is not actually well-ordered—it is ill-founded, densely ordered, and nonlinear. The statements usually used to illustrate these features, however, are weird self-referential assertions constructed in the Gödelian manner via the fixed-point lemma—logic-game trickery, often dismissed as unnatural.

Many set theorists claim that amongst the natural assertions, consistency strengths remain linearly ordered and indeed well ordered. H. Friedman refers to “the apparent comparability of naturally occurring logical strengths as one of the great mysteries of [the foundations of mathematics].” Andrés Caicedo says,

It is a remarkable empirical phenomenon that we indeed have comparability for natural theories. We expect this to always be the case, and a significant amount of work in inner model theory is guided by this belief.

Stephen G. Simpson writes:

It is striking that a great many foundational theories are linearly ordered by <. Of course it is possible to construct pairs of artificial theories which are incomparable under <. However, this is not the case for the “natural” or non-artificial theories which are usually regarded as significant in the foundations of mathematics. The problem of explaining this observed regularity is a challenge for future foundational research.

John Steel writes “The large cardinal hypotheses [the ones we know] are themselves wellordered by consistency strength,” and he formulates what he calls the “vague conjecture” asserting that

If T is a natural extension of ZFC, then there is an extension H axiomatized by large cardinal hypotheses such that T ≡ Con H. Moreover, ≤ Con is a prewellorder of the natural extensions of ZFC. In particular, if T and U are natural extensions of ZFC, then either T ≤ Con U or U ≤ Con T.

Peter Koellner writes

Remarkably, it turns out that when one restricts to those theories that “arise in nature” the interpretability ordering is quite simple: There are no descending chains and there are no incomparable elements—the interpretability ordering on theories that “arise in nature” is a wellordering.

Let me refer to this position as the natural linearity position, the assertion that all natural assertions of mathematics are linearly ordered by consistency strength. The strong form of the position, asserted by some of those whom I have cited above, asserts that the natural assertions of mathematics are indeed well-ordered by consistency strength. By all accounts, this view appears to be widely held in large cardinal set theory and the philosophy of set theory.

Despite the popularity of this position, I should like in this article to explore the contrary view and directly to challenge the natural linearity position.

Main Question. Can we find natural instances of nonlinearity and illfoundedness in the hierarchy of consistency strength?

I shall try my best.

You have to download the article to see my candidates for natural instances of nonlinearity in the hierarchy of large cardinal consistency strength, but I can tease you a little by mentioning that there are various cautious enumerations of the ZFC axioms which actually succeed in enumerating all the ZFC axioms, but with a strictly weaker consistency strength than the usual (incautious) enumeration. And similarly there are various cautious versions of the large cardinal hypothesis, which are natural, but also incomparable in consistency strength.

(Please note that it was Uri Andrews, rather than Uri Abraham, who settled question 16 with the result of theorem 17. I have corrected this from an earlier draft.)

Can there be natural instances of nonlinearity in the hierarchy of consistency strength? UWM Logic Seminar, January 2021

This is a talk for the University of Wisconsin, Madison Logic Seminar, 25 January 2020 1 pm (7 pm UK).

The talk will be held online via Zoom ID: 998 6013 7362.

Abstract. It is a mystery often mentioned in the foundations of mathematics that our best and strongest mathematical theories seem to be linearly ordered and indeed well-ordered by consistency strength. Given any two of the familiar large cardinal hypotheses, for example, generally one of them proves the consistency of the other. Why should this be? The phenomenon is seen as significant for the philosophy of mathematics, perhaps pointing us toward the ultimately correct mathematical theories. And yet, we know as a purely formal matter that the hierarchy of consistency strength is not well-ordered. It is ill-founded, densely ordered, and nonlinear. The statements usually used to illustrate these features are often dismissed as unnatural or as Gödelian trickery. In this talk, I aim to overcome that criticism—as well as I am able to—by presenting a variety of natural hypotheses that reveal ill-foundedness in consistency strength, density in the hierarchy of consistency strength, and incomparability in consistency strength.

The talk should be generally accessible to university logic students, requiring little beyond familiarity with the incompleteness theorem and some elementary ideas from computability theory.

Categorical large cardinals and the tension between categoricity and set-theoretic reflection

[bibtex key=”HamkinsSolberg:Categorical-large-cardinals”]

Abstract. Inspired by Zermelo’s quasi-categoricity result characterizing the models of second-order Zermelo-Fraenkel set theory $\text{ZFC}_2$, we investigate when those models are fully categorical, characterized by the addition to $\text{ZFC}_2$ either of a first-order sentence, a first-order theory, a second-order sentence or a second-order theory. The heights of these models, we define, are the categorical large cardinals. We subsequently consider various philosophical aspects of categoricity for structuralism and realism, including the tension between categoricity and set-theoretic reflection, and we present (and criticize) a categorical characterization of the set-theoretic universe $\langle V,\in\rangle$ in second-order logic.

Categorical accounts of various mathematical structures lie at the very core of structuralist mathematical practice, enabling mathematicians to refer to specific mathematical structures, not by having carefully to prepare and point at specially constructed instances—preserved like the one-meter iron bar locked in a case in Paris—but instead merely by mentioning features that uniquely characterize the structure up to isomorphism.

The natural numbers $\langle \mathbb{N},0,S\rangle$, for example, are uniquely characterized by the Dedekind axioms, which assert that $0$ is not a successor, that the successor function $S$ is one-to-one, and that every set containing $0$ and closed under successor contains every number. We know what we mean by the natural numbers—they have a definite realness—because we can describe features that completely determine the natural number structure. The real numbers $\langle\mathbb{R},+,\cdot,0,1\rangle$ similarly are characterized up to isomorphism as the unique complete ordered field. The complex numbers $\langle\mathbb{C},+,\cdot\rangle$ form the unique algebraically closed field of characteristic $0$ and size continuum, or alternatively, the unique algebraic closure of the real numbers. In fact all our fundamental mathematical structures enjoy such categorical characterizations, where a theory is categorical if it identifies a unique mathematical structure up to isomorphism—any two models of the theory are isomorphic. In light of the Löwenheim-Skolem theorem, which prevents categoricity for infinite structures in first-order logic, these categorical theories are generally made in second-order logic.

In set theory, Zermelo characterized the models of second-order Zermelo-Fraenkel set theory $\text{ZFC}_2$ in his famous quasi-categoricity result:

Theorem. (Zermelo, 1930) The models of $\text{ZFC}_2$ are precisely those isomorphic to a rank-initial segment $\langle V_\kappa,\in\rangle$ of the cumulative set-theoretic universe $V$ cut off at an inaccessible cardinal $\kappa$.

It follows that for any two models of $\text{ZFC}_2$, one of them is isomorphic to an initial segment of the other. These set-theoretic models $V_\kappa$ have now come to be known as Zermelo-Grothendieck universes, in light of Grothendieck’s use of them in category theory (a rediscovery several decades after Zermelo); they feature in the universe axiom, which asserts that every set is an element of some such $V_\kappa$, or equivalently, that there are unboundedly many inaccessible cardinals.

In this article, we seek to investigate the extent to which Zermelo’s quasi-categoricity analysis can rise fully to the level of categoricity, in light of the observation that many of the $V_\kappa$ universes are categorically characterized by their sentences or theories.

Question. Which models of $\text{ZFC}_2$ satisfy fully categorical theories?

If $\kappa$ is the smallest inaccessible cardinal, for example, then up to isomorphism $V_\kappa$ is the unique model of $\text{ZFC}_2$ satisfying the first-order sentence “there are no inaccessible cardinals.” The least inaccessible cardinal is therefore an instance of what we call a first-order sententially categorical cardinal. Similar ideas apply to the next inaccessible cardinal, and the next, and so on for quite a long way. Many of the inaccessible universes thus satisfy categorical theories extending $\text{ZFC}_2$ by a sentence or theory, either in first or second order, and we should like to investigate these categorical extensions of $\text{ZFC}_2$.

In addition, we shall discuss the philosophical relevance of categoricity and point particularly to the philosophical problem posed by the tension between the widespread support for categoricity in our fundamental mathematical structures with set-theoretic ideas on reflection principles, which are at heart anti-categorical.

Our main theme concerns these notions of categoricity:

Main Definition.

  • A cardinal $\kappa$ is first-order sententially categorical, if there is a first-order sentence $\sigma$ in the language of set theory, such that $V_\kappa$ is categorically characterized by $\text{ZFC}_2+\sigma$.
  • A cardinal $\kappa$ is first-order theory categorical, if there is a first-order theory $T$ in the language of set theory, such that $V_\kappa$ is categorically characterized by $\text{ZFC}_2+T$.
  • A cardinal $\kappa$ is second-order sententially categorical, if there is a second-order sentence $\sigma$ in the language of set theory, such that $V_\kappa$ is categorically characterized by $\text{ZFC}_2+\sigma$.
  • A cardinal $\kappa$ is second-order theory categorical, if there is a second-order theory $T$ in the language of set theory, such that $V_\kappa$ is categorically characterized by $\text{ZFC}_2+T$.

Follow through to the arxiv for the pdf to read more:

[bibtex key=”HamkinsSolberg:Categorical-large-cardinals”]

Related talk: Categorical cardinals, CUNY Set Theory Seminar, June 2020

Categorical cardinals, CUNY Set Theory Seminar, June 2020

This will be an online talk for the CUNY Set Theory Seminar, Friday 26 June 2020, 2 pm EST = 7 pm UK time. Contact Victoria Gitman for Zoom access. 

Abstract: Zermelo famously characterized the models of second-order Zermelo-Fraenkel set theory $\text{ZFC}_2$ in his 1930 quasi-categoricity result asserting that the models of $\text{ZFC}_2$ are precisely those isomorphic to a rank-initial segment $V_\kappa$ of the cumulative set-theoretic universe $V$ cut off at an inaccessible cardinal $\kappa$. I shall discuss the extent to which Zermelo’s quasi-categoricity analysis can rise fully to the level of categoricity, in light of the observation that many of the $V_\kappa$ universes are categorically characterized by their sentences or theories. For example, if $\kappa$ is the smallest inaccessible cardinal, then up to isomorphism $V_\kappa$ is the unique model of $\text{ZFC}_2$ plus the sentence “there are no inaccessible cardinals.” This cardinal $\kappa$ is therefore an instance of what we call a first-order sententially categorical cardinal. Similarly, many of the other inaccessible universes satisfy categorical extensions of $\text{ZFC}_2$ by a sentence or theory, either in first or second order. I shall thus introduce and investigate the categorical cardinals, a new kind of large cardinal. This is joint work with Robin Solberg (Oxford).

The Vopěnka principle is inequivalent to but conservative over the Vopěnka scheme

[bibtex key=Hamkins:The-Vopenka-principle-is-inequivalent-to-but-conservative-over-the-Vopenka-scheme]

Abstract. The Vopěnka principle, which asserts that every proper class of first-order structures in a common language admits an elementary embedding between two of its members, is not equivalent over GBC to the first-order Vopěnka scheme, which makes the Vopěnka assertion only for the first-order definable classes of structures. Nevertheless, the two Vopěnka axioms are equiconsistent and they have exactly the same first-order consequences in the language of set theory. Specifically, GBC plus the Vopěnka principle is conservative over ZFC plus the Vopěnka scheme for first-order assertions in the language of set theory.

Indras Net-03

The Vopěnka principle is the assertion that for every proper class $\mathcal{M}$ of first-order $\mathcal{L}$-structures, for a set-sized language $\mathcal{L}$, there are distinct members of the class $M,N\in\mathcal{M}$ with an elementary embedding $j:M\to N$ between them. In quantifying over classes, this principle is a single assertion in the language of second-order set theory, and it makes sense to consider the Vopěnka principle in the context of a second-order set theory, such as Godel-Bernays set theory GBC, whose language allows one to quantify over classes. In this article, GBC includes the global axiom of choice.

In contrast, the first-order Vopěnka scheme makes the Vopěnka assertion only for the first-order definable classes $\mathcal{M}$ (allowing parameters). This theory can be expressed as a scheme of first-order statements, one for each possible definition of a class, and it makes sense to consider the Vopěnka scheme in Zermelo-Frankael ZFC set theory with the axiom of choice.

Because the Vopěnka principle is a second-order assertion, it does not make sense to refer to it in the context of ZFC set theory, whose first-order language does not allow quantification over classes; one typically retreats to the Vopěnka scheme in that context. The theme of this article is to investigate the precise meta-mathematical interactions between these two treatments of Vopěnka’s idea.

Main Theorems.

  1. If ZFC and the Vopěnka scheme holds, then there is a class forcing extension, adding classes but no sets, in which GBC and the Vopěnka scheme holds, but the Vopěnka principle fails.
  2. If ZFC and the Vopěnka scheme holds, then there is a class forcing extension, adding classes but no sets, in which GBC and the Vopěnka principle holds.

It follows that the Vopěnka principle VP and the Vopěnka scheme VS are not equivalent, but they are equiconsistent and indeed, they have the same first-order consequences.

Corollaries.

  1. Over GBC, the Vopěnka principle and the Vopěnka scheme, if consistent, are not equivalent.
  2. Nevertheless, the two Vopěnka axioms are equiconsistent over GBC.
  3. Indeed, the two Vopěnka axioms have exactly the same first-order consequences in the language of set theory. Specifically, GBC plus the Vopěnka principle is conservative over ZFC plus the Vopěnka scheme for assertions in the first-order language of set theory. $$\text{GBC}+\text{VP}\vdash\phi\qquad\text{if and only if}\qquad\text{ZFC}+\text{VS}\vdash\phi$$

These results grew out of my my answer to a MathOverflow question of Mike Shulman, Can Vopěnka’s principle be violated definably?, inquiring whether there would always be a definable counterexample to the Vopěnka principle, whenever it should happen to fail. I interpret the question as asking whether the Vopěnka scheme is necessarily equivalent to the Vopěnka principle, and the answer is negative.

The proof of the main theorem involves the concept of a stretchable set $g\subset\kappa$ for an $A$-extendible cardinal, which has the property that for every cardinal $\lambda>\kappa$ and every extension $h\subset\lambda$ with $h\cap\kappa=g$, there is an elementary embedding $j:\langle V_\lambda,\in,A\cap V_\lambda\rangle\to\langle V_\theta,\in,A\cap V_\theta\rangle$ such that $j(g)\cap\lambda=h$. Thus, the set $g$ can be stretched by an $A$-extendibility embedding so as to agree with any given $h$.

Jacob Davis, PhD 2016, Carnegie Mellon University

Jacob Davis successfully defended his dissertation, “Universal Graphs at $\aleph_{\omega_1+1}$ and Set-theoretic Geology,” at Carnegie Mellon University on April 29, 2016, under the supervision of James Cummings. I was on the dissertation committee (participating via Google Hangouts), along with Ernest Schimmerling and Clinton Conley.

Jacob Davis

CMU web pageGoogle+ profile | ar$\chi$iv | math geneology

The thesis consisted of two main parts. In the first half, starting from a model of ZFC with a supercompact cardinal, Jacob constructed a model in which $2^{\aleph_{\omega_1}} = 2^{\aleph_{\omega_1+1}} = \aleph_{\omega_1+3}$ and in which there is a jointly universal family of size $\aleph_{\omega_1+2}$ of graphs on $\aleph_{\omega_1+1}$.  The same technique works with any uncountable cardinal in place of $\omega_1$.  In the second half, Jacob proved a variety of results in the area of set-theoretic geology, including several instances of the downward directed grounds hypothesis, including an analysis of the chain condition of the resulting ground models.

Giorgio Audrito, PhD 2016, University of Torino

Dr. Giorgio Audrito has successfully defended his dissertation, “Generic large cardinals and absoluteness,” at the University of Torino under the supervision of Matteo Viale.

The dissertation Examing Board consisted of myself (serving as Presidente), Alessandro Andretta and Sean Cox.  The defense took place March 2, 2016.

Giorgio Audrito defense (small)

The dissertation was impressive, introducing (in joint work with Matteo Viale) the iterated resurrection axioms $\text{RA}_\alpha(\Gamma)$ for a forcing class $\Gamma$, which extend the idea of the resurrection axioms from my work with Thomas Johnstone, The resurrection axioms and uplifting cardinals, by making successive extensions of the same type, forming the resurrection game, and insisting that that the resurrection player have a winning strategy with game value $\alpha$. A similar iterative game idea underlies the $(\alpha)$-uplifting cardinals, from which the consistency of the iterated resurrection axioms can be proved. A final chapter of the dissertation (joint with Silvia Steila), develops the notion of $C$-systems of filters, generalizing the more familiar concepts of extenders and towers.