Norman Lewis Perlmutter

Norman Lewis Perlmutter successfully defended his dissertation under my supervision and will earn his Ph.D. at the CUNY Graduate Center in May, 2013.  His dissertation consists of two parts.  The first chapter arose from the observation that while direct limits of large cardinal embeddings and other embeddings between models of set theory are pervasive in the subject, there is comparatively little study of inverse limits of systems of such embeddings.  After such an inverse system had arisen in Norman’s joint work on Generalizations of the Kunen inconsistency, he mounted a thorough investigation of the fundamental theory of these inverse limits. In chapter two, he investigated the large cardinal hierarchy in the vicinity of the high-jump cardinals.  During this investigation, he ended up refuting the existence of what are now called the excessively hypercompact cardinals, which had appeared in several published articles.  Previous applications of that notion can be made with a weaker notion, what is now called a hypercompact cardinal.

Norman Lewis Perlmutter

web page | math genealogy | MathSciNet | ar$\chi$iv | related posts

Norman Lewis Perlmutter, “Inverse limits of models of set theory and the large cardinal hierarchy near a high-jump cardinal”  Ph.D. dissertation for The Graduate Center of the City University of New York, May, 2013.

Abstract.  This dissertation consists of two chapters, each of which investigates a topic in set theory, more specifically in the research area of forcing and large cardinals. The two chapters are independent of each other.

The first chapter analyzes the existence, structure, and preservation by forcing of inverse limits of inverse-directed systems in the category of elementary embeddings and models of set theory. Although direct limits of directed systems in this category are pervasive in the set-theoretic literature, the inverse limits in this same category have seen less study. I have made progress towards fully characterizing the existence and structure of these inverse limits. Some of the most important results are as follows. If the inverse limit exists, then it is given by either the entire thread class or a rank-initial segment of the thread class. Given sufficient large cardinal hypotheses, there are systems with no inverse limit, systems with inverse limit given by the entire thread class, and systems with inverse limit given by a proper subset of the thread class. Inverse limits are preserved in both directions by forcing under fairly general assumptions. Prikry forcing and iterated Prikry forcing are important techniques for constructing some of the examples in this chapter.

The second chapter analyzes the hierarchy of the large cardinals between a supercompact cardinal and an almost-huge cardinal, including in particular high-jump cardinals. I organize the large cardinals in this region by consistency strength and implicational strength. I also prove some results relating high-jump cardinals to forcing.  A high-jump cardinal is the critical point of an elementary embedding $j: V \to M$ such that $M$ is closed under sequences of length $\sup\{\ j(f)(\kappa) \mid f: \kappa \to \kappa\ \}$.  Two of the most important results in the chapter are as follows. A Vopenka cardinal is equivalent to an Woodin-for-supercompactness cardinal. The existence of an excessively hypercompact cardinal is inconsistent.

Superstrong cardinals are never Laver indestructible, and neither are extendible, almost huge and rank-into-rank cardinals, CUNY, January 2013

This is a talk for the CUNY Set Theory Seminar on February 1, 2013, 10:00 am.

Abstract.  Although the large cardinal indestructibility phenomenon, initiated with Laver’s seminal 1978 result that any supercompact cardinal $\kappa$ can be made indestructible by $\lt\kappa$-directed closed forcing and continued with the Gitik-Shelah treatment of strong cardinals, is by now nearly pervasive in set theory, nevertheless I shall show that no superstrong strong cardinal—and hence also no $1$-extendible cardinal, no almost huge cardinal and no rank-into-rank cardinal—can be made indestructible, even by comparatively mild forcing: all such cardinals $\kappa$ are destroyed by $\text{Add}(\kappa,1)$, by $\text{Add}(\kappa,\kappa^+)$, by $\text{Add}(\kappa^+,1)$ and by many other commonly considered forcing notions.

This is very recent joint work with Konstantinos Tsaprounis and Joan Bagaria.

nylogic.org | Set Theory Seminar |

A multiverse perspective on the axiom of constructiblity

[bibtex key=Hamkins2014:MultiverseOnVeqL]

This article expands on an argument that I made during my talk at the Asian Initiative for Infinity: Workshop on Infinity and Truth, held July 25–29, 2011 at the Institute for Mathematical Sciences, National University of Singapore, and will be included in a proceedings volume that is being prepared for that conference.

Abstract. I argue that the commonly held $V\neq L$ via maximize position, which rejects the axiom of constructibility $V=L$ on the basis that it is restrictive, implicitly takes a stand in the pluralist debate in the philosophy of set theory by presuming an absolute background concept of ordinal. The argument appears to lose its force, in contrast, on an upwardly extensible concept of set, in light of the various facts showing that models of set theory generally have extensions to models of $V=L$ inside larger set-theoretic universes.

In section two, I provide a few new criticisms of Maddy’s proposed concept of `restrictive’ theories, pointing out that her concept of fairly interpreted in is not a transitive relation: there is a first theory that is fairly interpreted in a second, which is fairly interpreted in a third, but the first is not fairly interpreted in the third.  The same example (and one can easily construct many similar natural examples) shows that neither the maximizes over relation, nor the properly maximizes over relation, nor the strongly maximizes over relation is transitive.  In addition, the theory ZFC + “there are unboundedly many inaccessible cardinals” comes out as formally restrictive, since it is strongly maximized by the theory ZF + “there is a measurable cardinal, with no worldly cardinals above it.”

To support the main philosophical thesis of the article, I survey a series of mathemtical results,  which reveal various senses in which the axiom of constructibility $V=L$ is compatible with strength in set theory, particularly if one has in mind the possibility of moving from one universe of set theory to a much larger one.  Among them are the following, which I prove or sketch in the article:

Observation. The constructible universe $L$ and $V$ agree on the consistency of any constructible theory. They have models of the same constructible theories.

Theorem. The constructible universe $L$ and $V$ have transitive models of exactly the same constructible theories in the language of set theory.

Corollary. (Levy-Shoenfield absoluteness theorem)  In particular, $L$ and $V$ satisfy the same $\Sigma_1$ sentences, with parameters hereditarily countable in $L$. Indeed, $L_{\omega_1^L}$ and $V$ satisfy the same such sentences.

Theorem. Every countable transitive set is a countable transitive set in the well-founded part of an $\omega$-model of V=L.

Theorem. If there are arbitrarily large $\lambda<\omega_1^L$ with $L_\lambda\models\text{ZFC}$, then every countable transitive set $M$ is a countable transitive set inside a structure $M^+$  that is a pointwise-definable model of ZFC + V=L, and $M^+$ is well founded as high in the countable ordinals as desired.

Theorem. (Barwise)  Every countable model of  ZF has an end-extension to a model of ZFC + V=L.

Theorem. (Hamkins, see here)  Every countable model of set theory $\langle M,{\in^M}\rangle$, including every transitive model, is isomorphic to a submodel of its own constructible universe $\langle L^M,{\in^M}\rangle$. In other words,  there is an embedding $j:M\to L^M$, which is elementary for quantifier-free assertions.

Another way to say this is that every countable model of set theory is a submodel of a model isomorphic to $L^M$. If we lived inside $M$, then by adding new sets and elements, our universe could be transformed into a copy of the constructible universe $L^M$.

(Plus, the article contains some nice diagrams.)

Related Singapore links:

The least weakly compact cardinal can be unfoldable, weakly measurable and nearly $\theta$-supercompact, New York, September 14, 2012

This will be a talk for the CUNY Set Theory seminar on September 14, 2012.

Abstract.  Starting from suitable large cardinal hypothesis, I will explain how to force the least weakly compact cardinal to be unfoldable, weakly measurable and, indeed, nearly $\theta$-supercompact.  These results, proved in joint work with Jason Schanker, Moti Gitik and Brent Cody, exhibit an identity-crises phenomenon for weak compactness, similar to the phenomenon identified by Magidor for the case of strongly compact cardinals.

 

Moving up and down in the generic multiverse

[bibtex key=HamkinsLoewe2013:MovingUpAndDownInTheGenericMultiverse]

In this extended abstract we investigate the modal logic of the generic multiverse, which is a bimodal logic with operators corresponding to the relations “is a forcing extension of”‘ and “is a ground model of”. The fragment of the first relation is the modal logic of forcing and was studied by us in earlier work. The fragment of the second relation is the modal logic of grounds and will be studied here for the first time. In addition, we discuss which combinations of modal logics are possible for the two fragments.

The main theorems are as follows:

Theorem.  If  ZFC is consistent, then there is a model of  ZFC  whose modal logic of forcing and modal logic of grounds are both S4.2.

Theorem.  If  the theory “$L_\delta\prec L+\delta$ is inaccessible” is consistent, then there is a model of set theory whose modal logic of forcing is S4.2 and whose modal logic of grounds is S5.

Theorem.  If  the theory “$L_\delta\prec L+\delta$ is inaccessible” is consistent, then there is a model of set theory whose modal logic of forcing is S5 and whose modal logic of grounds is S4.2.

Theorem. There is no model of set theory such that both its modal logic of forcing and its modal logic of grounds are S5.

The current article is a brief extended abstract (10 pages).  A fuller account with more detailed proofs and further information will be provided in a subsequent articl

eprints:  ar$\chi$iv | NI12059-SAS | Hamburg #450

Brent Cody

Brent Cody earned his Ph.D. under my supervision at the CUNY Graduate Center in June, 2012.  Brent’s dissertation work began with the question of finding the exact consistency strength of the GCH failing at a cardinal $\theta$, when $\kappa$ is $\theta$-supercompact.  The answer turned out to be a $\theta$-supercompact cardinal that was also $\theta^{++}$-tall.  After this, he quickly dispatched more general instances of what he termed the Levinski property for a variety of other large cardinals, advancing his work towards a general investigation of the Easton theorem phenomenon in the large cardinal context, which he is now undertaking.  Brent held a post-doctoral position at the Fields Institute in Toronto, afterwards taking up a position at the University of Prince Edward Island.  He is now at Virginia Commonwealth University.

Brent Cody

web page | math genealogy | MathSciNet | ar$\chi$iv | related posts

Brent Cody, “Some Results on Large Cardinals and the Continuum Function,” Ph.D. dissertation for The Graduate Center of the City University of New York, June, 2012.

Abstract.  Given a Woodin cardinal $\delta$, I show that if $F$ is any Easton function with $F”\delta\subseteq\delta$ and GCH holds, then there is a cofinality preserving forcing extension in which $2^\gamma= F(\gamma)$ for each regular cardinal $\gamma<\delta$, and in which $\delta$ remains Woodin.

I also present a new example in which forcing a certain behavior of the continuum function on the regular cardinals, while preserving a given large cardinal, requires large cardinal strength beyond that of the original large cardinal under consideration. Specifically, I prove that the existence of a $\lambda$-supercompact cardinal $\kappa$ such that GCH fails at $\lambda$ is equiconsistent with the existence of a cardinal $\kappa$ that is $\lambda$-supercompact and $\lambda^{++}$-tall.

I generalize a theorem on measurable cardinals due to Levinski, which says that given a measurable cardinal, there is a forcing extension preserving the measurability of $\kappa$ in which $\kappa$ is the least regular cardinal at which GCH holds. Indeed, I show that Levinski’s result can be extended to many other large cardinal contexts. This work paves the way for many additional results, analogous to the results stated above for Woodin cardinals and partially supercompact cardinals.

Jason Schanker

Jason Aaron Schanker earned his Ph.D. under my supervision at the CUNY Graduate Center in June, 2011.  Jason’s dissertation introduces several interesting new large cardinal notions, investigating their interaction with forcing, indestructibility, the Generalized Continuum Hypothesis and other topics.  He defines that a cardinal $\kappa$ is weakly measurable, for example, if any family of $\kappa^+$ many subsets of $\kappa$ can be measured by a $\kappa$-complete filter.  This is equivalent to measurability under the GCH, of course, but the notions are not equivalent in general, although they are equiconsistent.  The weak measurability concept can be viewed as a generalization of weak compactness, and there are myriad equivalent formulations, including elementary embedding characterizations using transitive domains of size $\kappa^+$.  It was known classically that the failure of the GCH at a measurable cardinal has consistency strength strictly greater than a measurable cardinal, but Jason proved that the corresponding fact is not true for the weakly measurable cardinals.  Generalizing this notion, Jason introduced the near supercompactness hierarchy, which refines and extends the usual supercompactness hierarchy in a way that adapts well to many existing forcing arguments.  Jason holds a faculty position at Manhattanville College in Purchase, New York.

Jason Schanker

web page | math genealogy | MathSciNet | google scholar | I-phone apps | related posts

Jason Schanker, “Weakly Measurable Cardinals and Partial Near Supercompactness,”  Ph.D. dissertation for the Graduate Center of the City University of New York, June, 2011.

Abstract.  I will introduce a few new large cardinal concepts. A weakly measurable cardinal is a new large cardinal concept obtained by weakening the familiar concept of a measurable cardinal. Specifically, a cardinal $\kappa$ is weakly measurable if for every collection $A$ containing at most $\kappa^+$ many subsets of $\kappa$, there exists a nonprincipal $\kappa$-complete filter on $\kappa$ measuring all sets in $A$. Every measurable cardinal is weakly measurable, but a weakly measurable cardinal need not be measurable. Moreover, while the GCH cannot fail first at a measurable cardinal, I will show that it can fail first at a weakly measurable cardinal. More generally, if $\kappa$ is measurable, then we can make its weak measurability indestructible by the forcing $\text{Add}(\kappa,\eta)$ for all $\eta$ while forcing the GCH to hold below $\kappa$. Nevertheless, I shall prove that weakly measurable v cardinals and measurable cardinals are equiconsistent.

A cardinal κ is nearly $\theta$-supercompact if for every $A\subset\theta$, there exists a transitive $M\models\text{ZFC}^-$ closed under ${<}\kappa$ sequences with $A,\kappa,\theta\in M$, a transitive $N$, and an elementary embedding $j : M \to  N$ with critical point $\kappa$ such that $j(\kappa) > \theta$ and $j”\theta\in N$. This concept strictly refines the $\theta$-supercompactness hierarchy as every $\theta$-supercompact cardinal is nearly $\theta$-supercompact, and every nearly $2^{\theta^{{<}\kappa}}$-supercompact cardinal $\kappa$ is $\theta$-supercompact. Moreover, if $\kappa$ is a $\theta$-supercompact cardinal for some $\theta$ such that $\theta^{{<}\kappa}=\theta$, we can move to a forcing extension preserving all cardinals below $\theta^{++}$ where $\kappa$ remains $\theta$-supercompact but is not nearly $\theta^+$-supercompact. I will also show that if $\kappa$ is nearly $\theta$-supercompact for some $\theta\geq 2^\kappa$ such that $\theta^{{<}\theta}=\theta$, then there exists a forcing extension preserving all cardinals at or above $\kappa$ where $\kappa$ is nearly $\theta$-supercompact but not measurable. These types of large cardinals also come equipped with a nontrivial indestructibility result, and I will prove that if $\kappa$ is nearly $\theta$-supercompact for some $\theta\geq\kappa$ such that $\theta^{{<}\theta}=\theta$, then there is a forcing extension where its near $\theta$-supercompactness is preserved and indestructible by any further ${<}\kappa$-directed closed $\theta$-c.c. forcing of size at most $\theta$. Finally, these cardinals have high consistency strength. Specifically, I will show that if $\kappa$ is nearly $\theta$-supercompact for some $\theta\geq\kappa^+$ for which $\theta^{{<}\theta}=\theta$, then AD holds in $L(\mathbb{R})$. In particular, if $\kappa$ is nearly $\kappa^+$-supercompact and $2^\kappa=\kappa^+$, then AD holds in $L(\mathbb{R})$.

Victoria Gitman

Victoria Gitman earned her Ph.D. under my supervision at the CUNY Graduate Center in June, 2007.  For her dissertation work, Victoria had chosen a very difficult problem, the 1962 question of Dana Scott to characterize the standard systems of models of Peano Arithmetic, a question in the field of models of arithmetic that had been open for over forty years. Victoria was able to make progress, now published in several papers, by using an inter-disciplinary approach, applying set-theoretic ideas—including a use of the proper forcing axiom PFA—to the problem in the area of models of arithmetic, where such methods hadn’t often yet arisen.  Ultimately, she showed under PFA that every arithmetically closed proper Scott set is the standard system of a model of PA.  This result extends the classical result to a large new family of Scott sets, providing for these sets an affirmative solution to Scott’s problem.  In other dissertation work, Victoria untangled the confusing mass of ideas surrounding various Ramsey-like large cardinal concepts, ultimately separating them into a beautiful hierarchy, a neighborhood of the vast large cardinal hierarchy intensely studied by set theorists.  (Please see the diagram in her dissertation.)  Victoria holds a tenure-track position at the New York City College of Technology of CUNY.

Victoria Gitman

web page | math genealogy | MathSciNet | ar$\chi$iv | google scholar | related posts

Victoria Gitman, “Applications of the Proper Forcing Axiom to Models of Peano Arithmetic,”  Ph.D. dissertation for the Graduate Center of the City University of New York, June 2007.

Abstract. In Chapter 1, new results are presented on Scott’s Problem in the subject of models of Peano Arithmetic. Some forty years ago, Dana Scott showed that countable Scott sets are exactly the countable standard systems of models of PA, and two decades later, Knight and Nadel extended his result to Scott sets of size $\omega_1$. Here it is shown that assuming the Proper Forcing Axiom, every arithmetically closed proper Scott set is the standard system of a model of PA. In Chapter 2, new large cardinal axioms, based on Ramsey-like embedding properties, are introduced and placed within the large cardinal hierarchy. These notions generalize the seldom encountered embedding characterization of Ramsey cardinals. I also show how these large cardinals can be used to obtain indestructibility results for Ramsey cardinals.

Thomas Johnstone

Thomas Johnstone earned his Ph.D. under my supervision in June, 2007 at the CUNY Graduate Center.  Tom likes to get thoroughly to the bottom of a problem, and this indeed is what he did in his dissertation work on the forcing-theoretic aspects of unfoldable cardinals.  He seemed to want always to dig deeper, seeking out the unstated general phenomenon behind the results.  His characteristic style of giving a seminar talk—pure mathematical pleasure to attend—is to explain not only why the mathematical fact is true, but also why the proof must be the way that it is.  Thomas holds a tenure-track position at the New York City College of Technology of CUNY.

Thomas A. Johnstone

web page | math genealogy | MathSciNet | ar$\chi$iv | google scholar | related posts
 

Thomas A. Johnstone, “Strongly unfoldable cardinals made indestructible,” Ph.D. dissertation, The Graduate Center of the City University of New York, June 2007.

Abstract. I provide indestructibility results for weakly compact, indescribable and strongly unfoldable cardinals. In order to make these large cardinals indestructible, I assume the existence of a strongly unfoldable cardinal $\kappa$, which is a hypothesis consistent with $V=L$. The main result shows that any strongly unfoldable cardinal $\kappa$ can be made indestructible by all ${<}\kappa$-closed forcing which does not collapse $\kappa^{+}$. As strongly unfoldable cardinals strengthen both indescribable and weakly compact cardinals, I obtain indestructibility for these cardinals also, thereby reducing the large cardinal hypothesis of previously known indestructibility results for these cardinals significantly. Finally, I use the developed methods to show the consistency of a weakening of the Proper Forcing Axiom $\rm PFA$ relative to the existence of a strongly unfoldable cardinal.

Singular cardinals and strong extenders

[bibtex key=ApterCummingsHamkins2013:SingularCardinalsAndStrongExtenders]

Brent Cody asked the question whether the situation can arise that one has an elementary embedding $j:V\to M$ witnessing the $\theta$-strongness of a cardinal $\kappa$, but where $\theta$ is regular in $M$ and singular in $V$.

In this article, we investigate the various circumstances in which this does and does not happen, the circumstances under which there exist a singular cardinal $\mu$ and a short $(\kappa, \mu)$-extender $E$ witnessing “$\kappa$ is $\mu$-strong”, such that $\mu$ is singular in $Ult(V, E)$.

Climb into Cantor's attic

Please climb into Cantor’s attic, where you will find infinities of all sizes.  The site aims to be a comprehensive resource for the mathematical logic community, containing information about all mathematical concepts of infinity, including especially detailed information about the large cardinal hierarchy, as well as information about all other prominent specific ordinals and cardinals in mathematical logic and set theory, and how they are related.   We aim that Cantor’s attic will be the definitive on-line home of these various notions.  Please link to us whenever you need to link to a large cardinal or ordinal concept.

Cantor’s attic is the result of a community effort, and you can help improve this resource by joining our community.  We welcome contributions from knowledgeable experts in mathematical logic.  Please come and make a contribution!  You can create new pages, edit existing pages, add references, all using the same mediawiki software that powers wikipedia.  Further information about how to help is available at the Cantor’s attic community portal.

Cantor’s attic was founded in December 2011 by myself and Victoria Gitman.  We have only just begun, and it is a good time to get involved.  Feel free to contact me for advice or specific suggestions about how you might contribute.

Philosophy of set theory, Fall 2011, NYU PH GA 1180

I taught a course in Fall 2011 at NYU entitled Topics in Logic: set theory and the philosophy of set theory, aimed at graduate students in philosophy and others who want to gain greater understanding of some of the set-theoretic topics central to work in the philosophy of set theory.  The course began with a review of the mathematical ideas, including a presentation of large cardinals, strong axioms of infinity and their associated elementary embeddings of the universe, and forcing, emphasizing the connection with the Boolean ultrapower and Boolean-valued models, but discussing the alternative formalizations. The second part of the course covers some of the philosophical literature, including what it means to accept or believe mathematical axioms, whether mathematics needs new axioms, the criteria one might use when adopting new axioms, and the question of pluralism and categoricity in set theory.

Here is a partial list of our readings:

1. Mathematical background.

2.  Penelope Maddy, “Believing the axioms”, in two parts.  JSL vols. 52 and 53. Part 1Part 2

3. Chris Freiling, “Axioms of Symmetry: throwing darts at the real number line,”
JSL, vol. 51.   http://www.jstor.org/stable/2273955

4. W. N. Reinhardt, “Remarks on reflection principles, large cardinals, and elementary embeddings,” Proceedings of Symposia in Pure Mathematics, Vol 13, Part II, 1974, pp. 189-205.

5. Donald Martin, “Multiple universes of sets and indeterminate truth values,” Topoi 20, 5–16, 2001.

6. Hartry Field, “Which undecidable mathematical sentences have determinate truth values,” as reprinted in his book Truth and the Absence of Fact, Oxford University Press, 2001.

7. A brief selection from Marc Balaguer, Platonism and Anti-Platonism in Mathematics, Oxford University Press, 1998, describing the plenitudinous Platonism position.

8. Daniel Isaacson, “The reality of mathematics and the case of set theory,” 2007.

9. J. D. Hamkins, “The set-theoretic multiverse,” to appear in the Review of Symbolic Logic.

10.  Solomon Feferman, Does mathematics need new axioms? Text of an invited AMS-MAA joint meeting, San Diego, January, 1997.

11. Solomon Feferman, Is the continuum hypothesis a definite mathematical problem? Draft article for the Exploring the Frontiers of Independence lecture series at Harvard University, October, 2011.

12. Peter Koellner, Feferman On the Indefiniteness of CH, a commentary on Feferman’s EFI article.

13. Interpretability of theories, the interpretability degrees and Orey sentences in set theory and arithmetic.  Some of the basic material is found in Per Lindström’s book Aspects of Incompleteness, available at  http://projecteuclid.org/euclid.lnl/1235416274, particularly chapter 6, and some later chapters.

14. Haim Gaifman, “On ontology and realism in mathematics,” to appear in the Review of Symbolic Logic (special issue connected with the NYU philosophy of mathematics conference 2009).

15. Saharon Shelah, “Logical dreams,”  Bulletin of the AMS, 40(20):203–228, 2003. (Pre-publication version available at:http://arxiv.org/abs/math.LO/0211398)

16.  For mathematical/philosophical amusement, Philip Welch and Leon Horsten, “The aftermath.”

It’s been a great semester!

Inner models with large cardinal features usually obtained by forcing

[bibtex key=ApterGitmanHamkins2012:InnerModelsWithLargeCardinals]

We construct a variety of inner models exhibiting features usually obtained by forcing over universes with large cardinals. For example, if there is a supercompact cardinal, then there is an inner model with a Laver indestructible supercompact cardinal. If there is a supercompact cardinal, then there is an inner model with a supercompact cardinal $\kappa$ for which $2^\kappa=\kappa^+$, another for which $2^\kappa=\kappa^{++}$ and another in which the least strongly compact cardinal is supercompact. If there is a strongly compact cardinal, then there is an inner model with a strongly compact cardinal, for which the measurable cardinals are bounded below it and another inner model $W$ with a strongly compact cardinal $\kappa$, such that $H_{\kappa^+}^V\subseteq HOD^W$. Similar facts hold for supercompact, measurable and strongly Ramsey cardinals. If a cardinal is supercompact up to a weakly iterable cardinal, then there is an inner model of the Proper Forcing Axiom and another inner model with a supercompact cardinal in which GCH+V=HOD holds. Under the same hypothesis, there is an inner model with level by level equivalence between strong compactness and supercompactness, and indeed, another in which there is level by level inequivalence between strong compactness and supercompactness. If a cardinal is strongly compact up to a weakly iterable cardinal, then there is an inner model in which the least measurable cardinal is strongly compact. If there is a weakly iterable limit $\delta$ of ${\lt}\delta$-supercompact cardinals, then there is an inner model with a proper class of Laver-indestructible supercompact cardinals. We describe three general proof methods, which can be used to prove many similar results.

What is the theory ZFC without power set?

[bibtex key=”GitmanHamkinsJohnstone2016:WhatIsTheTheoryZFC-Powerset?”]

This is joint work with Victoria Gitman and Thomas Johnstone.

We show that the theory ZFC-, consisting of the usual axioms of ZFC but with the power set axiom removed-specifically axiomatized by extensionality, foundation, pairing, union, infinity, separation, replacement and the assertion that every set can be well-ordered-is weaker than commonly supposed and is inadequate to establish several basic facts often desired in its context. For example, there are models of ZFC- in which $\omega_1$ is singular, in which every set of reals is countable, yet $\omega_1$ exists, in which there are sets of reals of every size $\aleph_n$, but none of size $\aleph_\omega$, and therefore, in which the collection axiom sceme fails; there are models of ZFC- for which the Los theorem fails, even when the ultrapower is well-founded and the measure exists inside the model; there are models of ZFC- for which the Gaifman theorem fails, in that there is an embedding $j:M\to N$ of ZFC- models that is $\Sigma_1$-elementary and cofinal, but not elementary; there are elementary embeddings $j:M\to N$ of ZFC- models whose cofinal restriction $j:M\to \bigcup j“M$ is not elementary. Moreover, the collection of formulas that are provably equivalent in ZFC- to a $\Sigma_1$-formula or a $\Pi_1$-formula is not closed under bounded quantification. Nevertheless, these deficits of ZFC- are completely repaired by strengthening it to the theory $\text{ZFC}^-$, obtained by using collection rather than replacement in the axiomatization above. These results extend prior work of Zarach.

See Victoria Gitman’s summary post on the article