Open determinacy for class games

  • V. Gitman and J. D. Hamkins, “Open determinacy for class games,” in Foundations of Mathematics, Logic at Harvard, Essays in Honor of Hugh Woodin’s 60th Birthday, A. E. Caicedo, J. Cummings, P. Koellner, and P. Larson, Eds., American Mathematical Society, (expected) 2016. (also available as Newton Institute preprint ni15064)  
    @INCOLLECTION{GitmanHamkins2016:OpenDeterminacyForClassGames,
    author = {Victoria Gitman and Joel David Hamkins},
    title = {Open determinacy for class games},
    booktitle = {Foundations of Mathematics, Logic at Harvard, Essays in Honor of Hugh Woodin's 60th Birthday},
    publisher = {American Mathematical Society},
    year = {(expected) 2016},
    editor = {Andr\'es E. Caicedo and James Cummings and Peter Koellner and Paul Larson},
    volume = {},
    number = {},
    series = {Contemporary Mathematics},
    type = {},
    chapter = {},
    pages = {},
    address = {},
    edition = {},
    month = {},
    note = {also available as Newton Institute preprint ni15064},
    url = {http://jdh.hamkins.org/open-determinacy-for-class-games},
    eprint = {1509.01099},
    archivePrefix = {arXiv},
    primaryClass = {math.LO},
    abstract = {},
    keywords = {},
    }

Abstract. The principle of open determinacy for class games — two-player games of perfect information with plays of length $\omega$, where the moves are chosen from a possibly proper class, such as games on the ordinals — is not provable in Zermelo-Fraenkel set theory ZFC or Godel-Bernays set theory GBC, if these theories are consistent, because provably in ZFC there is a definable open proper class game with no definable winning strategy. In fact, the principle of open determinacy and even merely clopen determinacy for class games implies Con(ZFC) and iterated instances Con(Con(ZFC)) and more, because it implies that there is a satisfaction class for first-order truth, and indeed a transfinite tower of truth predicates $\text{Tr}_\alpha$ for iterated truth-about-truth, relative to any class parameter. This is perhaps explained, in light of the Tarskian recursive definition of truth, by the more general fact that the principle of clopen determinacy is exactly equivalent over GBC to the principle of transfinite recursion over well-founded class relations. Meanwhile, the principle of open determinacy for class games is provable in the stronger theory GBC$+\Pi^1_1$-comprehension, a proper fragment of Kelley-Morse set theory KM.

See my earlier posts on part of this material:

 

Ehrenfeucht's lemma in set theory

  • G. Fuchs, V. Gitman, and J. D. Hamkins, “Ehrenfeucht’s lemma in set theory,” to appear in Notre Dame Journal of Formal Logic.  
    @ARTICLE{FuchsGitmanHamkins:EhrenfeuchtsLemmaInSetTheory,
    author = {Gunter Fuchs and Victoria Gitman and Joel David Hamkins},
    title = {Ehrenfeucht's lemma in set theory},
    journal = {to appear in Notre Dame Journal of Formal Logic},
    year = {},
    volume = {},
    number = {},
    pages = {},
    month = {},
    eprint = {1501.01918},
    archivePrefix = {arXiv},
    primaryClass = {math.LO},
    note = {},
    url = {http://jdh.hamkins.org/ehrenfeuchts-lemma-in-set-theory},
    abstract = {},
    keywords = {},
    source = {},
    }

This is joint work with Gunter Fuchs and Victoria Gitman. $\newcommand\HOD{\text{HOD}}\newcommand\Ehrenfeucht{\text{EL}}$

Abstract. Ehrenfeucht’s lemma asserts that whenever one element of a model of Peano arithmetic is definable from another, then they satisfy different types. We consider here the analogue of Ehrenfeucht’s lemma for models of set theory. The original argument applies directly to the ordinal-definable elements of any model of set theory, and in particular, Ehrenfeucht’s lemma holds fully for models of set theory satisfying $V=\HOD$. We show that the lemma can fail, however, in models of set theory with $V\neq\HOD$, and it necessarily fails in the forcing extension to add a generic Cohen real. We go on to formulate a scheme of natural parametric generalizations of Ehrenfeucht’s lemma, namely, the principles of the form $\Ehrenfeucht(A,P,Q)$, which asserts that whenever an object $b$ is definable in $M$ from some $a\in A$ using parameters in $P$, with $b\neq a$, then the types of $a$ and $b$ over $Q$ in $M$ are different. We also consider various analogues of Ehrenfeucht’s lemma obtained by using algebraicity in place of definability, where a set $b$ is \emph{algebraic} in $a$ if it is a member of a finite set definable from $a$ (as in J. D. Hamkins and C. Leahy, Algebraicity and implicit definability in set theory). Ehrenfeucht’s lemma holds for the ordinal-algebraic sets, we prove, if and only if the ordinal-algebraic and ordinal-definable sets coincide. Using similar analysis, we answer two open questions posed in my paper with Leahy, by showing that (i) algebraicity and definability need not coincide in models of set theory and (ii) the internal and external notions of being ordinal algebraic need not coincide.

Incomparable $\omega_1$-like models of set theory

  • G. Fuchs, V. Gitman, and J. D. Hamkins, “Incomparable $\omega_1$-like models of set theory.” (manuscript under review)  
    @ARTICLE{FuchsGitmanHamkins:IncomparableOmega1-likeModelsOfSetTheory,
    author = {Gunter Fuchs and Victoria Gitman and Joel David Hamkins},
    title = {Incomparable $\omega_1$-like models of set theory},
    journal = {},
    year = {},
    volume = {},
    number = {},
    pages = {},
    month = {},
    eprint = {1501.01022},
    archivePrefix = {arXiv},
    primaryClass = {math.LO},
    note = {manuscript under review},
    url = {http://jdh.hamkins.org/incomparable-omega-one-like-models-of-set-theory},
    abstract = {},
    keywords = {},
    source = {},
    }

This is joint work with Gunter Fuchs and Victoria Gitman.

Abstract. We show that the analogues of the Hamkins embedding theorems, proved for the countable models of set theory, do not hold when extended to the uncountable realm of $\omega_1$-like models of set theory. Specifically, under the $\diamondsuit$ hypothesis and suitable consistency assumptions, we show that there is a family of $2^{\omega_1}$ many $\omega_1$-like models of $\text{ZFC}$, all with the same ordinals, that are pairwise incomparable under embeddability; there can be a transitive $\omega_1$-like model of ZFC that does not embed into its own constructible universe; and there can be an $\omega_1$-like model of PA whose structure of hereditarily finite sets is not universal for the $\omega_1$-like models of set theory.

In this article, we consider the question of whether the embedding theorems of my article, Every countable model of set theory embeds into its own constructible universe, which concern the countable models of set theory, might extend to the realm of uncountable models. Specifically, in that paper I had proved that (1) any two countable models of set theory are comparable by embeddability; indeed, (2) one countable model of set theory embeds into another just in case the ordinals of the first order-embed into the ordinals of the second; consequently, (3) every countable model of set theory embeds into its own constructible universe; and furthermore, (4) every countable model of set theory embeds into the hereditarily finite sets $\langle\text{HF},{\in}\rangle^M$ of any nonstandard model of arithmetic $M\models\text{PA}$. The question we consider here is, do the analogous results hold for uncountable models? Our answer is that they do not. Indeed, we shall prove that the corresponding statements do not hold even in the special case of $\omega_1$-like models of set theory, which otherwise among uncountable models often exhibit a special affinity with the countable models. Specifically, we shall construct large families of pairwise incomparable $\omega_1$-like models of set theory, even though they all have the same ordinals; we shall construct $\omega_1$-like models of set theory that do not embed into their own $L$; and we shall construct $\omega_1$-like models of \PA\ that are not universal for all $\omega_1$-like models of set theory.

The embedding theorems are expressed collectively in the theorem below. An embedding of one model $\langle M,{\in^M}\rangle$ of set theory into another $\langle N,{\in^N}\rangle$ is simply a function $j:M\to N$ for which $x\in^My\longleftrightarrow j(x)\in^Nj(y)$, for all $x,y\in M$, and in this case we say that $\langle M,{\in^M}\rangle$ embeds into $\langle N,{\in^N}\rangle$; note by extensionality that every embedding is injective. Thus, an embedding is simply an isomorphism of $\langle M,{\in^M}\rangle$ with its range, which is a submodel of $\langle N,{\in^N}\rangle$. Although this is the usual model-theoretic embedding concept for relational structures, the reader should note that it is a considerably weaker embedding concept than commonly encountered in set theory, because this kind of embedding need not be elementary nor even $\Delta_0$-elementary, although clearly every embedding as just defined is elementary at least for quantifier-free assertions. So we caution the reader not to assume a greater degree of elementarity beyond quantifier-free elementarity for the embeddings appearing in this paper.

Theorem.

1. For any two countable models of set theory $\langle M,\in^M\rangle$ and $\langle N,\in^N\rangle$, one of them embeds into the other.

2. Indeed, such an $\langle M,{\in^M}\rangle$ embeds into $\langle N,{\in^N}\rangle$ if and only if the ordinals of $M$ order-embed into the ordinals of $N$.

3. Consequently, every countable model $\langle M,\in^M\rangle$ of set theory embeds into its own constructible universe $\langle L^M,\in^M\rangle$.

4. Furthermore, every countable model of set theory embeds into the hereditary finite sets $\langle \text{HF},{\in}\rangle^M$ of any nonstandard model of arithmetic $M\models\text{PA}$. Indeed, $\text{HF}^M$ is universal for all countable acyclic binary relations.

One can begin to get an appreciation for the difference in embedding concepts by observing that ZFC proves that there is a nontrivial embedding $j:V\to V$, namely, the embedding recursively defined as follows $$j(y)=\bigl\{\ j(x)\ \mid\ x\in y\ \bigr\}\cup\bigl\{\{\emptyset,y\}\bigr\}.$$

We leave it as a fun exercise to verify that $x\in y\longleftrightarrow j(x)\in j(y)$ for the embedding $j$ defined by this recursion. (See my paper Every countable model of set theory embeds into its own constructible universe; but to give a hint here for the impatient, note that every $j(y)$ is nonempty and also $\emptyset\notin j(y)$; it follows that inside $j(y)$ we may identify the pair $\{\emptyset,y\}\in j(y)$; it follows that $j$ is injective and furthermore, the only way to have $j(x)\in j(y)$ is from $x\in y$.} Contrast this situation with the well-known Kunen inconsistency, which asserts that there can be no nontrivial $\Sigma_1$-elementary embedding $j:V\to V$. Similarly, the same recursive definition applied in $L$ leads to nontrivial embeddings $j:L\to L$, regardless of whether $0^\sharp$ exists. But again, the point is that embeddings are not necessarily even $\Delta_0$-elementary, and the familiar equivalence of the existence of $0^\sharp$ with a nontrivial “embedding” $j:L\to L$ actually requires a $\Delta_0$-elementary embedding.)

We find it interesting to note in contrast to the theorem above that there is no such embedding phenomenon in the the context of the countable models of Peano arithmetic (where an embedding of models of arithmetic is a function preserving all atomic formulas in the language of arithmetic). Perhaps the main reason for this is that embeddings between models of PA are automatically $\Delta_0$-elementary, as a consequence of the MRDP theorem, whereas this is not true for models of set theory, as the example above of the recursively defined embedding $j:V\to V$ shows, since this is an embedding, but it is not $\Delta_0$-elementary, in light of $j(\emptyset)\neq\emptyset$. For countable models of arithmetic $M,N\models\text{PA}$, one can show that there is an embedding $j:M\to N$ if and only if $N$ satisfies the $\Sigma_1$-theory of $M$ and the standard system of $M$ is contained in the standard system of $N$. It follows that there are many instances of incomparability. Meanwhile, it is a consequence of statement (4) that the embedding phenomenon recurs with the countable models of finite set theory $\text{ZFC}^{\neg\infty}$, that is, with $\langle\text{HF},{\in}\rangle^M$ for $M\models\text{PA}$, since all nonstandard such models are universal for all countable acyclic binary relations, and so in the context of countable models of $\text{ZFC}^{\neg\infty}$ there are precisely two bi-embeddability classes, namely, the standard model, which is initial, and the nonstandard countable models, which are universal.

Our main theorems are as follows.

Theorem.

1. If $\diamondsuit$ holds and ZFC is consistent, then there is a family $\mathcal C$ of $2^{\omega_1}$ many pairwise incomparable $\omega_1$-like models of ZFC, meaning that there is no embedding between any two distinct models in $\mathcal C$.

2. The models in statement (1) can be constructed so that their ordinals order-embed into each other and indeed, so that the ordinals of each model is a universal $\omega_1$-like linear order. If ZFC has an $\omega$-model, then the models of statement (1) can be constructed so as to have precisely the same ordinals.

3. If $\diamondsuit$ holds and ZFC is consistent, then there is an $\omega_1$-like model $M\models\text{ZFC}$ and an $\omega_1$-like model $N\models\text{PA}$ such that $M$ does not embed into $\langle\text{HF},{\in}\rangle^N$.

4. If there is a Mahlo cardinal, then in a forcing extension of $L$, there is a transitive $\omega_1$-like model $M\models\text{ZFC}$ that does not embed into its own constructible universe $L^M$.

Note that the size of the family $\mathcal C$ in statement (1) is as large as it could possibly be, given that any two elements in a pairwise incomparable family of structures must be non-isomorphic and there are at most $2^{\omega_1}$ many isomorphism types of $\omega_1$-like models of set theory or indeed of structures of size $\omega_1$ in any first-order finite language. Statement (2) shows that the models of the family $\mathcal C$ serve as $\omega_1$-like counterexamples to the assertion that one model of set theory embeds into another whenever the ordinals of the first order-embed into the ordinals of the second.

Victoria Gitman

Victoria Gitman earned her Ph.D. under my supervision at the CUNY Graduate Center in June, 2007.  For her dissertation work, Victoria had chosen a very difficult problem, the 1962 question of Dana Scott to characterize the standard systems of models of Peano Arithmetic, a question in the field of models of arithmetic that had been open for over forty years. Victoria was able to make progress, now published in several papers, by using an inter-disciplinary approach, applying set-theoretic ideas—including a use of the proper forcing axiom PFA—to the problem in the area of models of arithmetic, where such methods hadn’t often yet arisen.  Ultimately, she showed under PFA that every arithmetically closed proper Scott set is the standard system of a model of PA.  This result extends the classical result to a large new family of Scott sets, providing for these sets an affirmative solution to Scott’s problem.  In other dissertation work, Victoria untangled the confusing mass of ideas surrounding various Ramsey-like large cardinal concepts, ultimately separating them into a beautiful hierarchy, a neighborhood of the vast large cardinal hierarchy intensely studied by set theorists.  (Please see the diagram in her dissertation.)  Victoria holds a tenure-track position at the New York City College of Technology of CUNY.

Victoria Gitman

web page | math genealogy | MathSciNet | ar$\chi$iv | google scholar | related posts

Victoria Gitman, “Applications of the Proper Forcing Axiom to Models of Peano Arithmetic,”  Ph.D. dissertation for the Graduate Center of the City University of New York, June 2007.

Abstract. In Chapter 1, new results are presented on Scott’s Problem in the subject of models of Peano Arithmetic. Some forty years ago, Dana Scott showed that countable Scott sets are exactly the countable standard systems of models of PA, and two decades later, Knight and Nadel extended his result to Scott sets of size $\omega_1$. Here it is shown that assuming the Proper Forcing Axiom, every arithmetically closed proper Scott set is the standard system of a model of PA. In Chapter 2, new large cardinal axioms, based on Ramsey-like embedding properties, are introduced and placed within the large cardinal hierarchy. These notions generalize the seldom encountered embedding characterization of Ramsey cardinals. I also show how these large cardinals can be used to obtain indestructibility results for Ramsey cardinals.

Climb into Cantor's attic

Please climb into Cantor’s attic, where you will find infinities of all sizes.  The site aims to be a comprehensive resource for the mathematical logic community, containing information about all mathematical concepts of infinity, including especially detailed information about the large cardinal hierarchy, as well as information about all other prominent specific ordinals and cardinals in mathematical logic and set theory, and how they are related.   We aim that Cantor’s attic will be the definitive on-line home of these various notions.  Please link to us whenever you need to link to a large cardinal or ordinal concept.

Cantor’s attic is the result of a community effort, and you can help improve this resource by joining our community.  We welcome contributions from knowledgeable experts in mathematical logic.  Please come and make a contribution!  You can create new pages, edit existing pages, add references, all using the same mediawiki software that powers wikipedia.  Further information about how to help is available at the Cantor’s attic community portal.

Cantor’s attic was founded in December 2011 by myself and Victoria Gitman.  We have only just begun, and it is a good time to get involved.  Feel free to contact me for advice or specific suggestions about how you might contribute.

Inner models with large cardinal features usually obtained by forcing

  • A. Apter, V. Gitman, and J. D. Hamkins, “Inner models with large cardinal features usually obtained by forcing,” Archive for Mathematical Logic, vol. 51, pp. 257-283, 2012. (10.1007/s00153-011-0264-5)  
    @article {ApterGitmanHamkins2012:InnerModelsWithLargeCardinals,
    author = {Apter, Arthur and Gitman, Victoria and Hamkins, Joel David},
    affiliation = {Mathematics, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA},
    title = {Inner models with large cardinal features usually obtained by forcing},
    journal = {Archive for Mathematical Logic},
    publisher = {Springer Berlin / Heidelberg},
    issn = {0933-5846},
    keyword = {Mathematics and Statistics},
    pages = {257--283},
    volume = {51},
    issue = {3},
    url = {http://jdh.hamkins.org/innermodelswithlargecardinals/},
    eprint = {1111.0856},
    archivePrefix = {arXiv},
    primaryClass = {math.LO},
    doi = {10.1007/s00153-011-0264-5},
    note = {10.1007/s00153-011-0264-5},
    year = {2012}
    }

We construct a variety of inner models exhibiting features usually obtained by forcing over universes with large cardinals. For example, if there is a supercompact cardinal, then there is an inner model with a Laver indestructible supercompact cardinal. If there is a supercompact cardinal, then there is an inner model with a supercompact cardinal $\kappa$ for which $2^\kappa=\kappa^+$, another for which $2^\kappa=\kappa^{++}$ and another in which the least strongly compact cardinal is supercompact. If there is a strongly compact cardinal, then there is an inner model with a strongly compact cardinal, for which the measurable cardinals are bounded below it and another inner model $W$ with a strongly compact cardinal $\kappa$, such that $H_{\kappa^+}^V\subseteq HOD^W$. Similar facts hold for supercompact, measurable and strongly Ramsey cardinals. If a cardinal is supercompact up to a weakly iterable cardinal, then there is an inner model of the Proper Forcing Axiom and another inner model with a supercompact cardinal in which GCH+V=HOD holds. Under the same hypothesis, there is an inner model with level by level equivalence between strong compactness and supercompactness, and indeed, another in which there is level by level inequivalence between strong compactness and supercompactness. If a cardinal is strongly compact up to a weakly iterable cardinal, then there is an inner model in which the least measurable cardinal is strongly compact. If there is a weakly iterable limit $\delta$ of ${\lt}\delta$-supercompact cardinals, then there is an inner model with a proper class of Laver-indestructible supercompact cardinals. We describe three general proof methods, which can be used to prove many similar results.

What is the theory ZFC without power set?

  • V. Gitman, J. D. Hamkins, and T. A.~Johnstone, “What is the theory ZFC without Powerset?,” Mathematical Logic Quarterly, vol. 62, iss. 4–5, pp. 391-406, 2016.  
    @ARTICLE{GitmanHamkinsJohnstone:WhatIsTheTheoryZFC-Powerset?,
    AUTHOR = {Victoria Gitman and Joel David Hamkins and Thomas A.~Johnstone},
    TITLE = {What is the theory {ZFC} without {Powerset}?},
    JOURNAL = {Mathematical Logic Quarterly},
    YEAR = {2016},
    volume = {62},
    number = {4--5},
    pages = {391--406},
    month = {},
    note = {},
    abstract = {},
    keywords = {},
    doi = {10.1002/malq.201500019},
    eprint = {1110.2430},
    archivePrefix = {arXiv},
    primaryClass = {math.LO},
    url = {http://arxiv.org/abs/1110.2430},
    source = {},
    }

This is joint work with Victoria Gitman and Thomas Johnstone.

We show that the theory ZFC-, consisting of the usual axioms of ZFC but with the power set axiom removed-specifically axiomatized by extensionality, foundation, pairing, union, infinity, separation, replacement and the assertion that every set can be well-ordered-is weaker than commonly supposed and is inadequate to establish several basic facts often desired in its context. For example, there are models of ZFC- in which $\omega_1$ is singular, in which every set of reals is countable, yet $\omega_1$ exists, in which there are sets of reals of every size $\aleph_n$, but none of size $\aleph_\omega$, and therefore, in which the collection axiom sceme fails; there are models of ZFC- for which the Los theorem fails, even when the ultrapower is well-founded and the measure exists inside the model; there are models of ZFC- for which the Gaifman theorem fails, in that there is an embedding $j:M\to N$ of ZFC- models that is $\Sigma_1$-elementary and cofinal, but not elementary; there are elementary embeddings $j:M\to N$ of ZFC- models whose cofinal restriction $j:M\to \bigcup j“M$ is not elementary. Moreover, the collection of formulas that are provably equivalent in ZFC- to a $\Sigma_1$-formula or a $\Pi_1$-formula is not closed under bounded quantification. Nevertheless, these deficits of ZFC- are completely repaired by strengthening it to the theory $\text{ZFC}^-$, obtained by using collection rather than replacement in the axiomatization above. These results extend prior work of Zarach.

See Victoria Gitman’s summary post on the article

A natural model of the multiverse axioms

  • V. Gitman and J. D. Hamkins, “A natural model of the multiverse axioms,” Notre Dame J.~Form.~Log., vol. 51, iss. 4, pp. 475-484, 2010.  
    @ARTICLE{GitmanHamkins2010:NaturalModelOfMultiverseAxioms,
    AUTHOR = {Gitman, Victoria and Hamkins, Joel David},
    TITLE = {A natural model of the multiverse axioms},
    JOURNAL = {Notre Dame J.~Form.~Log.},
    FJOURNAL = {Notre Dame Journal of Formal Logic},
    VOLUME = {51},
    YEAR = {2010},
    NUMBER = {4},
    PAGES = {475--484},
    ISSN = {0029-4527},
    MRCLASS = {03E40},
    MRNUMBER = {2741838},
    DOI = {10.1215/00294527-2010-030},
    URL = {http://dx.doi.org/10.1215/00294527-2010-030},
    eprint = {1104.4450},
    archivePrefix = {arXiv},
    primaryClass = {math.LO},
    }

In this article, we prove that if ZFC is consistent, then the collection of countable computably saturated models of ZFC satisfies all of the Multiverse Axioms that I introduced in my paper, “The set-theoretic multiverse.”

What is the theory of ZFC-Powerset? Toronto 2011

This was a talk at the Toronto Set Theory Seminar held April 22, 2011 at the Fields Institute in Toronto.

The theory ZFC-, consisting of the usual axioms of ZFC but with the powerset axiom removed, when axiomatized by extensionality, foundation, pairing, union, infinity, separation, replacement and the axiom of choice, is weaker than commonly supposed, and suffices to prove neither that a countable union of countable sets is countable, nor that $\omega_1$ is regular, nor that the Los theorem holds for ultrapowers, even for well-founded ultrapowers on a measurable cardinal, nor that the Gaifman theorem holds, that is, that every $\Sigma_1$-elementary cofinal embedding $j:M\to N$ between models of the theory is fully elementary, nor that $\Sigma_n$ sets are closed under bounded quantification. Nevertheless, these deficits of ZFC- are completely repaired by strengthening it to the theory obtained by using the collection axiom rather than replacement in the axiomatization above. These results extend prior work of Zarach. This is joint work with Victoria Gitman and Thomas Johnstone.

Article | Victoria Gitman’s post