Ord is not definably weakly compact

[bibtex key=EnayatHamkins2018:Ord-is-not-definably-weakly-compact]

In ZFC the class of all ordinals is very like a large cardinal.  Being closed under exponentiation, for example, Ord is a strong limit.  Indeed, it is a beth fixed point. And Ord is regular with respect to definable classes by the replacement axiom.  In this sense, ZFC therefore proves that Ord is definably inaccessible.  Which other large cardinal properties are exhibited by Ord? Perhaps you wouldn’t find it unreasonable for Ord to exhibit, at least consistently with ZFC, the definable proper class analogues of other much stronger large cardinal properties?

Meanwhile, the main results of this paper, joint between myself and Ali Enayat, show that such an expectation would be misplaced, even for comparatively small large cardinal properties. Specifically, in a result that surprised me, it turns out that the class of ordinals NEVER exhibits the definable proper class analogue of weak compactness in any model of ZFC.

Theorem. The class of ordinals is not definably weakly compact. In every model of ZFC:

  1. The definable tree property fails; there is a definable Ord-tree with no definable cofinal branch.
  2. The definable partition property fails; there is a definable 2-coloring of a definable proper class, with no homogeneous definable proper subclass.
  3. The definable compactness property fails for $\mathcal{L}_{\mathrm{Ord,\omega}}$; there is a definable theory in this logic, all of whose set-sized subtheories are satisfiable, but the whole theory has no definable class model.

The proof uses methods from the model theory of set theory, including especially the fact that no model of ZFC has a conservative $\Sigma_3$-elementary end-extension.

Theorem. The definable $\Diamond _{\mathrm{Ord}}$ principle holds in a model of ZFC if and only if the model has a definable well-ordering.

We close the paper by proving that the theory of the spartan models of Gödel-Bernays set theory GB — those equipped with only their definable classes — is $\Pi^1_1$-complete.

Theorem. The set of sentences true in all spartan models of GB is $\Pi_{1}^{1}$-complete.

The weakly compact embedding property, Apter-Gitik celebration, CMU 2015

This will be a talk at the Conference in honor of Arthur W. Apter and Moti Gitik at Carnegie Mellon University, May 30-31, 2015.  I am pleased to be a part of this conference in honor of the 60th birthdays of two mathematicians whom I admire very much.

Moti GitikArthur W. Apter

 

 

 

 

 

 

 

 

Abstract. The weakly compact embedding property for a cardinal $\kappa$ is the assertion that for every transitive set $M$ of size $\kappa$ with $\kappa\in M$, there is a transitive set $N$ and an elementary embedding $j:M\to N$ with critical point $\kappa$. When $\kappa$ is inaccessible, this property is one of many equivalent characterizations of $\kappa$ being weakly compact, along with the weakly compact extension property, the tree property, the weakly compact filter property and many others. When $\kappa$ is not inaccessible, however, these various properties are no longer equivalent to each other, and it is interesting to sort out the relations between them. In particular, I shall consider the embedding property and these other properties in the case when $\kappa$ is not necessarily inaccessible, including interesting instances of the embedding property at cardinals below the continuum, with relations to cardinal characteristics of the continuum.

This is joint work with Brent Cody, Sean Cox, myself and Thomas Johnstone.

Slides | Article | Conference web site

Carnegie Mellon University, College of Fine Arts

Large cardinals need not be large in HOD

[bibtex key=ChengFriedmanHamkins2015:LargeCardinalsNeedNotBeLargeInHOD]

Abstract. We prove that large cardinals need not generally exhibit their large cardinal nature in HOD. For example, a supercompact cardinal $\kappa$ need not be weakly compact in HOD, and there can be a proper class of supercompact cardinals in $V$, none of them weakly compact in HOD, with no supercompact cardinals in HOD. Similar results hold for many other types of large cardinals, such as measurable and strong cardinals.

In this article, we prove that large cardinals need not generally exhibit their large cardinal nature in HOD, the inner model of hereditarily ordinal-definable sets, and there can be a divergence in strength between the large cardinals of the ambient set-theoretic universe $V$ and those of HOD. Our general theme concerns the questions:

Questions.

1. To what extent must a large cardinal in $V$ exhibit its large cardinal properties in HOD?

2. To what extent does the existence of large cardinals in $V$ imply the existence of large cardinals in HOD?

For large cardinal concepts beyond the weakest notions, we prove, the answers are generally negative. In Theorem 4, for example, we construct a model with a supercompact cardinal that is not weakly compact in HOD, and Theorem 9 extends this to a proper class of supercompact cardinals, none of which is weakly compact in HOD, thereby providing some strongly negative instances of (1). The same model has a proper class of supercompact cardinals, but no supercompact cardinals in HOD, providing a negative instance of (2). The natural common strengthening of these situations would be a model with a proper class of supercompact cardinals, but no weakly compact cardinals in HOD. We were not able to arrange that situation, however, and furthermore it would be ruled out by Conjecture 13, an intriguing positive instance of (2) recently proposed by W. Hugh Woodin, namely, that if there is a supercompact cardinal, then there is a measurable cardinal in HOD. Many other natural possibilities, such as a proper class of measurable cardinals with no weakly compact cardinals in HOD, remain as open questions.

CUNY talkRutgers talk | Luminy talk

Large cardinals need not be large in HOD, International Workshop on Set Theory, CIRM, Luminy, September 2014

I shall speak at the 13th International Workshop on Set Theory, held at the CIRM Centre International de Rencontres Mathématiques in Luminy near Marseille, France, September 29 to October 3, 2014. 

Abstract.  I shall prove that large cardinals need not generally exhibit their large cardinal nature in HOD. For example, a supercompact cardinal need not be weakly compact in HOD, and there can be a proper class of supercompact cardinals in $V$, none of them weakly compact in HOD, with no supercompact cardinals in HOD. Similar results hold for many other types of large cardinals, such as measurable and strong cardinals. There are many open questions.

This talk will include joint work with Cheng Yong and Sy-David Friedman.

Article | Participants | Slides

Large cardinals need not be large in HOD, Rutgers logic seminar, April 2014

 

I shall speak at the Rutgers Logic Seminar on April 21, 2014, 5:00-6:20 pm, Room 705, Hill Center, Busch Campus, Rutgers University.

Abstract. I will show that large cardinals, such as measurable, strong and supercompact cardinals, need not exhibit their large cardinal nature in HOD.  Specifically, it is relatively consistent that a supercompact cardinal is not weakly compact in HOD, and one may construct models with a proper class of supercompact cardinals, none of them weakly compact in HOD.  This is current joint work with Cheng Yong.

Article

The least weakly compact cardinal can be unfoldable, weakly measurable and nearly $\theta$-supercompact

[bibtex key=CodyGitikHamkinsSchanker2015:LeastWeaklyCompact]

Abstract.   We prove from suitable large cardinal hypotheses that the least weakly compact cardinal can be unfoldable, weakly measurable and even nearly $\theta$-supercompact, for any desired $\theta$. In addition, we prove several global results showing how the entire class of weakly compact cardinals, a proper class, can be made to coincide with the class of unfoldable cardinals, with the class of weakly measurable cardinals or with the class of nearly $\theta_\kappa$-supercompact cardinals $\kappa$, for nearly any desired function $\kappa\mapsto\theta_\kappa$. These results answer several questions that had been open in the literature and extend to these large cardinals the identity-crises phenomenon, first identified by Magidor with the strongly compact cardinals.

In this article, we prove that the least weakly compact cardinal can exhibit any of several much stronger large cardinal properties. Namely, the least weakly compact cardinal can be unfoldable, weakly measurable and nearly $\theta$-supercompact for any desired $\theta$.

Main Theorem.  Assuming a suitable large cardinal hypothesis, the least weakly compact cardinal can be unfoldable, weakly measurable and even nearly $\theta$-supercompact, for any desired $\theta$.

Meanwhile, the least weakly compact cardinal can never exhibit these extra large cardinal properties in $L$, and indeed, the existence of a weakly measurable cardinal in the constructible universe is impossible. Furthermore, in each case the extra properties are strictly stronger than weak compactness in consistency strength.

We show in addition a more global result, that the entire class of weakly compact cardinals can be made to coincide with the class of unfoldable cardinals, with the class of weakly measurable cardinals, and with the class of nearly $\theta_\kappa$-supercompact cardinals $\kappa$, with enormous flexibility in the map $\kappa\mapsto\theta_\kappa$.

Our results therefore extend the `identity-crises’ phenomenon—first identified (and named) by Magidor—which occurs when a given large cardinal property can be made in various models to coincide either with much stronger or with much weaker large cardinal notions. Magidor had proved that the least strongly compact cardinal can be the least supercompact cardinal in one model of set theory and the least measurable cardinal in another. Here, we extend the phenomenon to weak measurability, partial near supercompactness and unfoldability. Specifically, the least weakly measurable cardinal coincides with the least measurable cardinal under the GCH, but it is the least weakly compact cardinal in our main theorem. Similarly, the least cardinal $\kappa$ that is nearly $\kappa^{+}$-supercompact is measurable with nontrivial Mitchell order under the GCH, but it is the least weakly compact cardinal here (and similar remarks apply to near $\kappa^{++}$-supercompactness and so on). The least unfoldable cardinal is strongly unfoldable in $L$, and therefore a $\Sigma_2$-reflecting limit of weakly compact cardinals there, but it is the least weakly compact cardinal in our main theorem. The global results of section 6 show just how malleable these notions are.

Jason Schanker

Jason Aaron Schanker earned his Ph.D. under my supervision at the CUNY Graduate Center in June, 2011.  Jason’s dissertation introduces several interesting new large cardinal notions, investigating their interaction with forcing, indestructibility, the Generalized Continuum Hypothesis and other topics.  He defines that a cardinal $\kappa$ is weakly measurable, for example, if any family of $\kappa^+$ many subsets of $\kappa$ can be measured by a $\kappa$-complete filter.  This is equivalent to measurability under the GCH, of course, but the notions are not equivalent in general, although they are equiconsistent.  The weak measurability concept can be viewed as a generalization of weak compactness, and there are myriad equivalent formulations, including elementary embedding characterizations using transitive domains of size $\kappa^+$.  It was known classically that the failure of the GCH at a measurable cardinal has consistency strength strictly greater than a measurable cardinal, but Jason proved that the corresponding fact is not true for the weakly measurable cardinals.  Generalizing this notion, Jason introduced the near supercompactness hierarchy, which refines and extends the usual supercompactness hierarchy in a way that adapts well to many existing forcing arguments.  Jason holds a faculty position at Manhattanville College in Purchase, New York.

Jason Schanker

web page | math genealogy | MathSciNet | google scholar | I-phone apps | related posts

Jason Schanker, “Weakly Measurable Cardinals and Partial Near Supercompactness,”  Ph.D. dissertation for the Graduate Center of the City University of New York, June, 2011.

Abstract.  I will introduce a few new large cardinal concepts. A weakly measurable cardinal is a new large cardinal concept obtained by weakening the familiar concept of a measurable cardinal. Specifically, a cardinal $\kappa$ is weakly measurable if for every collection $A$ containing at most $\kappa^+$ many subsets of $\kappa$, there exists a nonprincipal $\kappa$-complete filter on $\kappa$ measuring all sets in $A$. Every measurable cardinal is weakly measurable, but a weakly measurable cardinal need not be measurable. Moreover, while the GCH cannot fail first at a measurable cardinal, I will show that it can fail first at a weakly measurable cardinal. More generally, if $\kappa$ is measurable, then we can make its weak measurability indestructible by the forcing $\text{Add}(\kappa,\eta)$ for all $\eta$ while forcing the GCH to hold below $\kappa$. Nevertheless, I shall prove that weakly measurable v cardinals and measurable cardinals are equiconsistent.

A cardinal κ is nearly $\theta$-supercompact if for every $A\subset\theta$, there exists a transitive $M\models\text{ZFC}^-$ closed under ${<}\kappa$ sequences with $A,\kappa,\theta\in M$, a transitive $N$, and an elementary embedding $j : M \to  N$ with critical point $\kappa$ such that $j(\kappa) > \theta$ and $j”\theta\in N$. This concept strictly refines the $\theta$-supercompactness hierarchy as every $\theta$-supercompact cardinal is nearly $\theta$-supercompact, and every nearly $2^{\theta^{{<}\kappa}}$-supercompact cardinal $\kappa$ is $\theta$-supercompact. Moreover, if $\kappa$ is a $\theta$-supercompact cardinal for some $\theta$ such that $\theta^{{<}\kappa}=\theta$, we can move to a forcing extension preserving all cardinals below $\theta^{++}$ where $\kappa$ remains $\theta$-supercompact but is not nearly $\theta^+$-supercompact. I will also show that if $\kappa$ is nearly $\theta$-supercompact for some $\theta\geq 2^\kappa$ such that $\theta^{{<}\theta}=\theta$, then there exists a forcing extension preserving all cardinals at or above $\kappa$ where $\kappa$ is nearly $\theta$-supercompact but not measurable. These types of large cardinals also come equipped with a nontrivial indestructibility result, and I will prove that if $\kappa$ is nearly $\theta$-supercompact for some $\theta\geq\kappa$ such that $\theta^{{<}\theta}=\theta$, then there is a forcing extension where its near $\theta$-supercompactness is preserved and indestructible by any further ${<}\kappa$-directed closed $\theta$-c.c. forcing of size at most $\theta$. Finally, these cardinals have high consistency strength. Specifically, I will show that if $\kappa$ is nearly $\theta$-supercompact for some $\theta\geq\kappa^+$ for which $\theta^{{<}\theta}=\theta$, then AD holds in $L(\mathbb{R})$. In particular, if $\kappa$ is nearly $\kappa^+$-supercompact and $2^\kappa=\kappa^+$, then AD holds in $L(\mathbb{R})$.

Indestructible weakly compact cardinals and the necessity of supercompactness for certain proof schemata

[bibtex key=ApterHamkins2001:IndestructibleWC]

We show that if the weak compactness of a cardinal is made indestructible by means of any preparatory forcing of a certain general type, including any forcing naively resembling the Laver preparation, then the cardinal was originally supercompact. We then apply this theorem to show that the hypothesis of supercompactness is necessary for certain proof schemata.