Recent advances in set-theoretic geology, Harvard Logic Colloquium, October 2016

I will speak at the Harvard Logic Colloquium, October 20, 2016, 4-6 pm.

harvard

Abstract. Set-theoretic geology is the study of the set-theoretic universe $V$ in the context of all its ground models and those of its forcing extensions. For example, a bedrock of the universe is a minimal ground model of it and the mantle is the intersection of all grounds. In this talk, I shall explain some recent advances, including especially the breakthrough result of Toshimichi Usuba, who proved the strong downward directed grounds hypothesis: for any set-indexed family of grounds, there is a deeper common ground below them all. This settles a large number of formerly open questions in set-theoretic geology, while also leading to new questions. It follows, for example, that the mantle is a model of ZFC and provably the largest forcing-invariant definable class. Strong downward directedness has also led to an unexpected connection between large cardinals and forcing: if there is a hyper-huge cardinal $\kappa$, then the universe indeed has a bedrock and all grounds use only $\kappa$-small forcing.

Slides

Set-theoretic potentialism, CUNY Logic Workshop, September, 2016

This will be a talk for the CUNY Logic Workshop, September 16, 2016, at the CUNY Graduate Center, Room 6417, 2-3:30 pm.

Book 06487 20040730160046 droste effect nevit.jpgAbstract.  In analogy with the ancient views on potential as opposed to actual infinity, set-theoretic potentialism is the philosophical position holding that the universe of set theory is never fully completed, but rather has a potential character, with greater parts of it becoming known to us as it unfolds. In this talk, I should like to undertake a mathematical analysis of the modal commitments of various specific natural accounts of set-theoretic potentialism. After developing a general model-theoretic framework for potentialism and describing how the corresponding modal validities are revealed by certain types of control statements, which we call buttons, switches, dials and ratchets, I apply this analysis to the case of set-theoretic potentialism, including the modalities of true-in-all-larger-$V_\beta$, true-in-all-transitive-sets, true-in-all-Grothendieck-Zermelo-universes, true-in-all-countable-transitive-models and others. Broadly speaking, the height-potentialist systems generally validate exactly S4.3 and the height-and-width-potentialist systems generally validate exactly S4.2. Each potentialist system gives rise to a natural accompanying maximality principle, which occurs when S5 is valid at a world, so that every possibly necessary statement is already true.  For example, a Grothendieck-Zermelo universe $V_\kappa$, with $\kappa$ inaccessible, exhibits the maximality principle with respect to assertions in the language of set theory using parameters from $V_\kappa$ just in case $\kappa$ is a $\Sigma_3$-reflecting cardinal, and it exhibits the maximality principle with respect to assertions in the potentialist language of set theory with parameters just in case it is fully reflecting $V_\kappa\prec V$.

This is current joint work with Øystein Linnebo, in progress, which builds on some of my prior work with George Leibman and Benedikt Löwe in the modal logic of forcing.

CUNY Logic Workshop abstract | link to article will be posted later

The modal logic of set-theoretic potentialism, Kyoto, September 2016

Kyoto cuisineThis will be a talk for the workshop conference Mathematical Logic and Its Applications, which will be held at the Research Institute for Mathematical Sciences, Kyoto University, Japan, September 26-29, 2016, organized by Makoto Kikuchi. The workshop is being held in memory of Professor Yuzuru Kakuda, who was head of the research group in logic at Kobe University during my stay there many years ago.

Abstract.  Set-theoretic potentialism is the ontological view in the philosophy of mathematics that the universe of set theory is never fully completed, but rather has a potential character, with greater parts of it becoming known to us as it unfolds. In this talk, I should like to undertake a mathematical analysis of the modal commitments of various specific natural accounts of set-theoretic potentialism. After developing a general model-theoretic framework for potentialism and describing how the corresponding modal validities are revealed by certain types of control statements, which we call buttons, switches, dials and ratchets, I apply this analysis to the case of set-theoretic potentialism, including the modalities of true-in-all-larger-$V_\beta$, true-in-all-transitive-sets, true-in-all-Grothendieck-Zermelo-universes, true-in-all-countable-transitive-models and others. Broadly speaking, the height-potentialist systems generally validate exactly S4.3 and the height-and-width-potentialist systems validate exactly S4.2. Each potentialist system gives rise to a natural accompanying maximality principle, which occurs when S5 is valid at a world, so that every possibly necessary statement is already true.  For example, a Grothendieck-Zermelo universe $V_\kappa$, with $\kappa$ inaccessible, exhibits the maximality principle with respect to assertions in the language of set theory using parameters from $V_\kappa$ just in case $\kappa$ is a $\Sigma_3$-reflecting cardinal, and it exhibits the maximality principle with respect to assertions in the potentialist language of set theory with parameters just in case it is fully reflecting $V_\kappa\prec V$.

This is joint work with Øystein Linnebo, which builds on some of my prior work with George Leibman and Benedikt Löwe in the modal logic of forcing. Our research article is currently in progress.

Slides | Workshop program

Recent progress on the modal logic of forcing and grounds, CUNY Logic Workshop, September 2012

This will be a talk for the CUNY Logic Workshop on September 7, 2012.

Abstract. The modal logic of forcing arises when one considers a model of set theory in the context of all its forcing extensions, with “true in all forcing extensions” and“true in some forcing extension” as the accompanying modal operators. In this modal language one may easily express sweeping general forcing principles, such asthe assertion that every possibly necessary statement is necessarily possible, which is valid for forcing, orthe assertion that every possibly necessary statement is true, which is the maximality principle, a forcing axiom independent of but equiconsistent with ZFC.  Similarly, the dual modal logic of grounds concerns the modalities “true in all ground models” and “true in some ground model”.  In this talk, I shall survey the recent progress on the modal logic of forcing and the modal logic of grounds. This is joint work with Benedikt Loewe and George Leibman.

 

Moving up and down in the generic multiverse

  • J. D. Hamkins and B. Löwe, “Moving up and down in the generic multiverse,” Logic and its Applications, ICLA 2013 LNCS, vol. 7750, pp. 139-147, 2013.  
    @ARTICLE{HamkinsLoewe2013:MovingUpAndDownInTheGenericMultiverse,
    AUTHOR = {Joel David Hamkins and Benedikt L\"owe},
    title = {Moving up and down in the generic multiverse},
    journal = {Logic and its Applications, ICLA 2013 LNCS},
    publisher= {Springer Berlin Heidelberg},
    editor= {Lodaya, Kamal},
    isbn= {978-3-642-36038-1},
    year = {2013},
    volume = {7750},
    number = {},
    pages = {139--147},
    doi= {10.1007/978-3-642-36039-8_13},
    month = {},
    note = {},
    url = {http://jdh.hamkins.org/up-and-down-in-the-generic-multiverse},
    url = {http://arxiv.org/abs/1208.5061},
    eprint = {1208.5061},
    archivePrefix = {arXiv},
    primaryClass = {math.LO},
    abstract = {},
    keywords = {},
    source = {},
    }

In this extended abstract we investigate the modal logic of the generic multiverse, which is a bimodal logic with operators corresponding to the relations “is a forcing extension of”‘ and “is a ground model of”. The fragment of the first relation is the modal logic of forcing and was studied by us in earlier work. The fragment of the second relation is the modal logic of grounds and will be studied here for the first time. In addition, we discuss which combinations of modal logics are possible for the two fragments.

The main theorems are as follows:

Theorem.  If  ZFC is consistent, then there is a model of  ZFC  whose modal logic of forcing and modal logic of grounds are both S4.2.

Theorem.  If  the theory “$L_\delta\prec L+\delta$ is inaccessible” is consistent, then there is a model of set theory whose modal logic of forcing is S4.2 and whose modal logic of grounds is S5.

Theorem.  If  the theory “$L_\delta\prec L+\delta$ is inaccessible” is consistent, then there is a model of set theory whose modal logic of forcing is S5 and whose modal logic of grounds is S4.2.

Theorem. There is no model of set theory such that both its modal logic of forcing and its modal logic of grounds are S5.

The current article is a brief extended abstract (10 pages).  A fuller account with more detailed proofs and further information will be provided in a subsequent articl

eprints:  ar$\chi$iv | NI12059-SAS | Hamburg #450

George Leibman

George Joseph Leibman earned his Ph.D. under my supervision in June, 2004 at the CUNY Graduate Center. He was my first Ph.D. student. Being very interested both in forcing and in modal logic, it was natural for him to throw himself into the emerging developments at the common boundary of these topics.  He worked specifically on the natural extensions of the maximality principle where when one considers a fixed definable class $\Gamma$ of forcing notions.  This research engaged with fundamental questions about the connection between the forcing-theoretic properties of the forcing class $\Gamma$ and the modal logic of its forcing validities, and was a precursor of later work, including joint work, on the modal logic of forcing.

George Leibman

George Leibman

 

web page | math genealogy | MathSciNet | ar$\chi$iv | related posts

George Leibman, “Consistency Strengths of Modified Maximality Principles,” Ph.D. thesis, CUNY Graduate Center, 2004.  ar$\chi$iv

Abstract. The Maximality Principle MP is a scheme which states that if a sentence of the language of ZFC is true in some forcing extension $V^{\mathbb{P}}$, and remains true in any further forcing extension of $V^{\mathbb{P}}$, then it is true in all forcing extensions of $V$.  A modified maximality principle $\text{MP}_\Gamma$ arises when considering forcing with a particular class $\Gamma$ of forcing notions. A parametrized form of such a principle, $\text{MP}_\Gamma(X)$, considers formulas taking parameters; to avoid inconsistency such parameters must be restricted to a specific set $X$ which depends on the forcing class $\Gamma$ being considered. A stronger necessary form of such a principle, $\square\text{MP}_\Gamma(X)$, occurs when it continues to be true in all $\Gamma$ forcing extensions.

This study uses iterated forcing, modal logic, and other techniques to establish consistency strengths for various modified maximality principles restricted to various forcing classes, including ccc, COHEN, COLL (the forcing notions that collapse ordinals to $\omega$), ${\lt}\kappa$ directed closed forcing notions, etc., both with and without parameter sets. Necessary forms of these principles are also considered.

Structural connections between a forcing class and its modal logic

  • J. D. Hamkins, G. Leibman, and B. Löwe, “Structural connections between a forcing class and its modal logic,” Israel J. Math., vol. 207, iss. 2, pp. 617-651, 2015.  
    @article {HamkinsLeibmanLoewe2015:StructuralConnectionsForcingClassAndItsModalLogic,
    AUTHOR = {Hamkins, Joel David and Leibman, George and L{\"o}we,
    Benedikt},
    TITLE = {Structural connections between a forcing class and its modal
    logic},
    JOURNAL = {Israel J. Math.},
    FJOURNAL = {Israel Journal of Mathematics},
    VOLUME = {207},
    YEAR = {2015},
    NUMBER = {2},
    PAGES = {617--651},
    ISSN = {0021-2172},
    MRCLASS = {03E40 (03B45)},
    MRNUMBER = {3359713},
    DOI = {10.1007/s11856-015-1185-5},
    url = {http://jdh.hamkins.org/a-forcing-class-and-its-modal-logic},
    eprint = {1207.5841},
    archivePrefix = {arXiv},
    primaryClass = {math.LO},
    }

The modal logic of forcing arises when one considers a model of set theory in the context of all its forcing extensions, interpreting $\square$ as “in all forcing extensions” and $\Diamond$ as “in some forcing extension”. In this modal language one may easily express sweeping general forcing principles, such as $\Diamond\square\varphi\to\square\Diamond\varphi$, the assertion that every possibly necessary statement is necessarily possible, which is valid for forcing, or $\Diamond\square\varphi\to\varphi$, the assertion that every possibly necessary statement is true, which is the maximality principle, a forcing axiom independent of but equiconsistent with ZFC (see A simple maximality principle).

Every definable forcing class similarly gives rise to the corresponding forcing modalities, for which one considers extensions only by forcing notions in that class. In previous work, we proved that if ZFC is consistent, then the ZFC-provably valid principles of the class of all forcing are precisely the assertions of the modal theory S4.2 (see The modal logic of forcing). In this article, we prove that the provably valid principles of collapse forcing, Cohen forcing and other classes are in each case exactly S4.3; the provably valid principles of c.c.c. forcing, proper forcing, and others are each contained within S4.3 and do not contain S4.2; the provably valid principles of countably closed forcing, CH-preserving forcing and others are each exactly S4.2; and the provably valid principles of $\omega_1$-preserving forcing are contained within S4.tBA. All these results arise from general structural connections we have identified between a forcing class and the modal logic of forcing to which it gives rise, including the connection between various control statements, such as buttons, switches and ratchets, and their corresponding forcing validities. These structural connections therefore support a forcing-only analysis of other diverse forcing classes.

Preprints available at:  ar$\chi$iv | NI12055-SAS | UvA ILLC PP-2012-19 | HBM 446

The set-theoretical multiverse

  • J. D. Hamkins, “The set-theoretic multiverse,” Review of Symbolic Logic, vol. 5, pp. 416-449, 2012.  
    @ARTICLE{Hamkins2012:TheSet-TheoreticalMultiverse,
    AUTHOR = {Joel David Hamkins},
    TITLE = {The set-theoretic multiverse},
    JOURNAL = {Review of Symbolic Logic},
    YEAR = {2012},
    volume = {5},
    number = {},
    pages = {416--449},
    month = {},
    note = {},
    url = {},
    doi = {10.1017/S1755020311000359},
    abstract = {},
    keywords = {},
    source = {},
    eprint = {1108.4223},
    archivePrefix = {arXiv},
    primaryClass = {math.LO},
    url = {http://jdh.hamkins.org/themultiverse},
    }

The Multiverse by KaeltykThe multiverse view in set theory, introduced and argued for in this article, is the view that there are many distinct concepts of set, each instantiated in a corresponding set-theoretic universe. The universe view, in contrast, asserts that there is an absolute background set concept, with a corresponding absolute set-theoretic universe in which every set-theoretic question has a definite answer. The multiverse position, I argue, explains our experience with the enormous diversity of set-theoretic possibilities, a phenomenon that challenges the universe view. In particular, I argue that the continuum hypothesis is settled on the multiverse view by our extensive knowledge about how it behaves in the multiverse, and as a result it can no longer be settled in the manner formerly hoped for.

Multiversive at n-Category Cafe | Multiverse on Mathoverflow

The set-theoretical multiverse: a natural context for set theory, Japan 2009

  • J. D. Hamkins, “The Set-theoretic Multiverse : A Natural Context for Set Theory,” Annals of the Japan Association for Philosophy of Science, vol. 19, pp. 37-55, 2011.  
    @article{Hamkins2011:TheMultiverse:ANaturalContext,
    author="Joel David Hamkins",
    title="The Set-theoretic Multiverse : A Natural Context for Set Theory",
    journal="Annals of the Japan Association for Philosophy of Science",
    ISSN="0453-0691",
    publisher="the Japan Association for Philosophy of Science",
    year="2011",
    volume="19",
    number="",
    pages="37--55",
    URL="http://ci.nii.ac.jp/naid/110008722567/en/",
    DOI="",
    }

This article is based on a talk I gave at the conference in honor of the retirement of Yuzuru Kakuda in Kobe, Japan, March 7, 2009. I would like to express my gratitude to Kakuda-sensei and the rest of the logic group in Kobe for the opportunities provided to me to participate in logic in Japan. In particular, my time as a JSPS Fellow in the logic group at Kobe University in 1998 was a formative experience. I was part of a vibrant research group in Kobe; I enjoyed Japanese life, learned to speak a little Japanese and made many friends. Mathematically, it was a productive time, and after years away how pleasant it is for me to see that ideas planted at that time, small seedlings then, have grown into tall slender trees.

Set theorists often take their subject as constituting a foundation for the rest of mathematics, in the sense that other abstract mathematical objects can be construed fundamentally as sets. In this way, they regard the set-theoretic universe as the universe of all mathematics. And although many set-theorists affirm the Platonic view that there is just one universe of all sets, nevertheless the most powerful set-theoretic tools developed over the past half century are actually methods of constructing alternative universes. With forcing and other methods, we can now produce diverse models of ZFC set theory having precise, exacting features. The fundamental object of study in set theory has thus become the model of set theory, and the subject consequently begins to exhibit a category-theoretic second-order nature. We have a multiverse of set-theoretic worlds, connected by forcing and large cardinal embeddings like constellations in a dark sky. In this article, I will discuss a few emerging developments illustrating this second-order nature. The work engages pleasantly with various philosophical views on the nature of mathematical existence.

Slides

 

Some second order set theory

  • J. D. Hamkins, “Some second order set theory,” in Logic and its applications, R.~Ramanujam and S.~Sarukkai, Eds., Berlin: Springer, 2009, vol. 5378, pp. 36-50.  
    @INCOLLECTION{Hamkins2009:SomeSecondOrderSetTheory,
    AUTHOR = {Hamkins, Joel David},
    TITLE = {Some second order set theory},
    BOOKTITLE = {Logic and its applications},
    SERIES = {Lecture Notes in Comput.~Sci.},
    VOLUME = {5378},
    PAGES = {36--50},
    PUBLISHER = {Springer},
    EDITOR = {R.~Ramanujam and S.~Sarukkai},
    ADDRESS = {Berlin},
    YEAR = {2009},
    MRCLASS = {03E35 (03B45 03E40)},
    MRNUMBER = {2540935 (2011a:03053)},
    DOI = {10.1007/978-3-540-92701-3_3},
    URL = {http://dx.doi.org/10.1007/978-3-540-92701-3_3},
    }

This article surveys two recent developments in set theory sharing an essential second-order nature, namely, the modal logic of forcing, oriented upward from the universe of set theory to its forcing extensions; and set-theoretic geology, oriented downward from the universe to the inner models over which it arises by forcing. The research is a mixture of ideas from several parts of logic, including, of course, set theory and forcing, but also modal logic, finite combinatorics and the philosophy of mathematics, for it invites a mathematical engagement with various philosophical views on the nature of mathematical existence.

The modal logic of forcing

  • J. D. Hamkins and B. Löwe, “The modal logic of forcing,” Trans.~Amer.~Math.~Soc., vol. 360, iss. 4, pp. 1793-1817, 2008.  
    @ARTICLE{HamkinsLoewe2008:TheModalLogicOfForcing,
    AUTHOR = {Hamkins, Joel David and L{\"o}we, Benedikt},
    TITLE = {The modal logic of forcing},
    JOURNAL = {Trans.~Amer.~Math.~Soc.},
    FJOURNAL = {Transactions of the American Mathematical Society},
    VOLUME = {360},
    YEAR = {2008},
    NUMBER = {4},
    PAGES = {1793--1817},
    ISSN = {0002-9947},
    CODEN = {TAMTAM},
    MRCLASS = {03E40 (03B45)},
    MRNUMBER = {2366963 (2009h:03068)},
    MRREVIEWER = {Andreas Blass},
    DOI = {10.1090/S0002-9947-07-04297-3},
    URL = {http://dx.doi.org/10.1090/S0002-9947-07-04297-3},
    eprint = {math/0509616},
    archivePrefix = {arXiv},
    primaryClass = {math.LO},
    file = F
    }

What are the most general principles in set theory relating forceability and truth? As with Solovay’s celebrated analysis of provability, both this question and its answer are naturally formulated with modal logic. We aim to do for forceability what Solovay did for provability. A set theoretical assertion $\psi$ is forceable or possible, if $\psi$ holds in some forcing extension, and necessary, if $\psi$ holds in all forcing extensions. In this forcing interpretation of modal logic, we establish that if ZFC is consistent, then the ZFC-provable principles of forcing are exactly those in the modal theory known as S4.2.

Follow-up article:  Structural connections between a forcing class and its modal logic

A simple maximality principle

  • J. D. Hamkins, “A simple maximality principle,” J.~Symbolic Logic, vol. 68, iss. 2, pp. 527-550, 2003.  
    @article{Hamkins2003:MaximalityPrinciple,
    AUTHOR = {Hamkins, Joel David},
    TITLE = {A simple maximality principle},
    JOURNAL = {J.~Symbolic Logic},
    FJOURNAL = {The Journal of Symbolic Logic},
    VOLUME = {68},
    YEAR = {2003},
    NUMBER = {2},
    PAGES = {527--550},
    ISSN = {0022-4812},
    CODEN = {JSYLA6},
    MRCLASS = {03E35 (03E40)},
    MRNUMBER = {1976589 (2005a:03094)},
    MRREVIEWER = {Ralf-Dieter Schindler},
    DOI = {10.2178/jsl/1052669062},
    URL = {http://projecteuclid.org/getRecord?id=euclid.jsl/1052669062},
    month = {June},
    eprint = {math/0009240},
    archivePrefix = {arXiv},
    primaryClass = {math.LO},
    }

In this paper, following an idea of Christophe Chalons, I propose a new kind of forcing axiom, the Maximality Principle, which asserts that any sentence$\varphi$ holding in some forcing extension $V^{\mathbb{P}}$ and all subsequent extensions $V^{\mathbb{P}*\mathbb{Q}}$ holds already in $V$. It follows, in fact, that such sentences must also hold in all forcing extensions of $V$. In modal terms, therefore, the Maximality Principle is expressed by the scheme $(\Diamond\Box\varphi)\to\Box\varphi$, and is equivalent to the modal theory S5. In this article, I prove that the Maximality Principle is relatively consistent with ZFC. A boldface version of the Maximality Principle, obtained by allowing real parameters to appear in $\varphi$, is equiconsistent with the scheme asserting that $V_\delta$ is an elementary substructure of $V$ for an inaccessible cardinal $\delta$, which in turn is equiconsistent with the scheme asserting that ORD is Mahlo. The strongest principle along these lines is the Necessary Maximality Principle, which asserts that the boldface MP holds in V and all forcing extensions. From this, it follows that $0^\sharp$ exists, that $x^\sharp$ exists for every set $x$, that projective truth is invariant by forcing, that Woodin cardinals are consistent and much more. Many open questions remain.

The set-theoretic multiverse: a model-theoretic philosophy of set theory, Paris, 2010

A talk at the Philosophy and Model Theory conference held June 2-5, 2010 at the Université Paris Ouest Nanterre.

Set theorists commonly regard set theory as an ontological foundation for the rest of mathematics, in the sense that other abstract mathematical objects can be construed fundamentally as sets, enjoying a real mathematical existence as sets accumulate to form the universe of all sets. The Universe view—perhaps it is the orthodox view among set theorists—takes this universe of sets to be unique, and holds that a principal task of set theory is to discover its fundamental truths. For example, on this view, interesting set-theoretical questions, such as the Continuum Hypothesis, will have definitive final answers in this universe. Proponents of this view point to the increasingly stable body of regularity features flowing from the large cardinal hierarchy as indicating in broad strokes that we are on the right track towards these final answers.

A paradox for the orthodox view, however, is the fact that the most powerful tools in set theory are most naturally understood as methods for constructing alternative set-theoretic universes. With forcing and other methods, we seem to glimpse into alternative mathematical worlds, and are led to consider a model-theoretic, multiverse philosophical position. In this talk, I shall describe and defend the Multiverse view, which takes these other worlds at face value, holding that there are many set-theoretical universes. This is a realist position, granting these universes a full mathematical existence and exploring their interactions. The multiverse view remains Platonist, but it is second-order Platonism, that is, Platonism about universes. I shall argue that set theory is now mature enough to fruitfully adopt and analyze this view. I shall propose a number of multiverse axioms, provide a multiverse consistency proof, and describe some recent results in set theory that illustrate the multiverse perspective, while engaging pleasantly with various philosophical views on the nature of mathematical existence.

Slides  | Article | see related Singapore talk