This will be my talk for the Set Theory in the United Kingdom 4, a conference to be held in Oxford on 14 December 2019. I am organizing the conference with Sam Adam-Day.

Modal model theory

Abstract. I shall introduce the subject of modal model theory, a research effort bringing modal concepts and vocabulary into model theory. For any first-order theory T, we may naturally consider the models of T as a Kripke model under the submodel relation, and thereby naturally expand the language of T to include the modal operators. In the class of all graphs, for example, a statement is possible in a graph, if it is true in some larger graph, having that graph as an induced subgraph, and a statement is necessary when it is true in all such larger graphs. The modal expansion of the language is quite powerful: in graphs it can express k-colorability and even finiteness and countability. The main idea applies to any collection of models with an extension concept. The principal questions are: what are the modal validities exhibited by the class of models or by individual models? For example, a countable graph validates S5 for graph theoretic assertions with parameters, for example, just in case it is the countable random graph; and without parameters, just in case it is universal for all finite graphs. Similar results apply with digraphs, groups, fields and orders. This is joint work with Wojciech Wołoszyn.

@ARTICLE{HamkinsWilliams:The-universal-finite-sequence,
author = {Joel David Hamkins and Kameryn J. Williams},
title = {The $\Sigma_1$-definable universal finite sequence},
journal = {ArXiv e-prints},
year = {2019},
volume = {},
number = {},
pages = {},
month = {},
note = {under review},
abstract = {},
keywords = {under-review},
eprint = {1909.09100},
archivePrefix = {arXiv},
primaryClass = {math.LO},
source = {},
doi = {},
}

Abstract. We introduce the $\Sigma_1$-definable universal finite sequence and prove that it exhibits the universal extension property amongst the countable models of set theory under end-extension. That is, (i) the sequence is $\Sigma_1$-definable and provably finite; (ii) the sequence is empty in transitive models; and (iii) if $M$ is a countable model of set theory in which the sequence is $s$ and $t$ is any finite extension of $s$ in this model, then there is an end extension of $M$ to a model in which the sequence is $t$. Our proof method grows out of a new infinitary-logic-free proof of the Barwise extension theorem, by which any countable model of set theory is end-extended to a model of $V=L$ or indeed any theory true in a suitable submodel of the original model. The main theorem settles the modal logic of end-extensional potentialism, showing that the potentialist validities of the models of set theory under end-extensions are exactly the assertions of S4. Finally, we introduce the end-extensional maximality principle, which asserts that every possibly necessary sentence is already true, and show that every countable model extends to a model satisfying it.

Let me introduce to you the topic of modal model theory, injecting some ideas from modal logic into the traditional subject of model theory in mathematical logic.

For example, we may consider the class of all models of some first-order theory, such as the class of all graphs, or the class of all groups, or all fields or what have you. In general, we have $\newcommand\Mod{\text{Mod}}\Mod(T)$, where $T$ is a first-order theory in some language $L$.

We may consider $\Mod(T)$ as a potentialist system, a Kripke model of possible worlds, where each model accesses the larger models, of which it is a submodel. So $\newcommand\possible{\Diamond}\possible\varphi$ is true at a model $M$, if there is a larger model $N$ in which $\varphi$ holds, and $\newcommand\necessary{\Box}\necessary\varphi$ is true at $M$, if $\varphi$ holds in all larger models.

In this way, we enlarge the language $L$ to include these modal operators. Let $\possible(L)$ be the language obtained by closing $L$ under the modal operators and Boolean connectives; and let $L^\possible$ also close under quantification. The difference is whether a modal operator falls under the scope of a quantifier.

Recently, in a collaborative project with Wojciech Aleksander Wołoszyn, we made some progress, which I’d like to explain. (We also have many further results, concerning the potentialist validities of various natural instances of $\Mod(T)$, but those will wait for another post.)

Theorem. If models $M$ and $N$ are elementarily equivalent, that is, if they have the same theory in the language of $L$, then they also have the same theory in the modal language $\possible(L)$.

Proof. We show that whenever $M\equiv N$ in the language of $L$, then $M\models\varphi\iff N\models\varphi$ for sentences $\varphi$ in the modal language $\possible(L)$, by induction on $\varphi$.

Of course, by assumption the statement is true for sentences $\varphi$ in the base language $L$. And the property is clearly preserved by Boolean combinations. What remains is the modal case. Suppose that $M\equiv N$ and $M\models\possible\varphi$. So there is some extension model $M\subset W\models\varphi$.

Since $M\equiv N$, it follows by the Keisler-Shelah theorem that $M$ and $N$ have isomorphic ultrapowers $\prod_\mu M\cong\prod_\mu N$, for some ultrafilter $\mu$. It is easy to see that isomorphic structures satisfy exactly the same modal assertions in the class of all models of a theory. Since $M\subset W$, it follows that the ultrapower of $M$ is extended to (a copy of) the ultrapower of $W$, and so $\prod_\mu M\models\possible\varphi$, and therefore also $\prod_\mu N\models\possible\varphi$. From this, since $N$ embeds into its ultrapower $\prod_\mu N$, it follows also that $N\models\possible\varphi$, as desired. $\Box$

Corollary. If one model elementarily embeds into another $M\prec N$, in the language $L$ of these structures, then this embedding is also elementary in the language $\possible(L)$.

Proof. To say $M\prec N$ in language $L$ is the same as saying that $M\equiv N$ in the language $L_M$, where we have added constants for every element of $M$, and interpreted these constants in $N$ via the embedding. Thus, by the theorem, it follows that $M\equiv N$ in the language $\possible(L_M)$, as desired. $\Box$

For example, every model $M$ is elementarily embedding into its ultrapowers $\prod_\mu M$, in the language $\possible(L)$.

We’d like to point out next that these results do not extend to elementary equivalence in the full modal language $L^\possible$.

For a counterexample, let’s work in the class of all simple graphs, in the language with a binary predicate for the edge relation. (We’ll have no parallel edges, and no self-edges.) So the accessibility relation here is the induced subgraph relation.

Lemma. The 2-colorability of a graph is expressible in $\possible(L)$. Similarly for $k$-colorability for any finite $k$.

Proof. A graph is 2-colorable if we can partition its vertices into two sets, such that a vertex is in one set if and only if all its neighbors are in the other set. This can be effectively coded by adding two new vertices, call them red and blue, such that every node (other than red and blue) is connected to exactly one of these two points, and a vertex is connected to red if and only if all its neighbors are connected to blue, and vice versa. If the graph is $2$-colorable, then there is an extension realizing this statement, and if there is an extension realizing the statement, then (even if more than two points were added) the original graph must be $2$-colorable. $\Box$

A slightly more refined observation is that for any vertex $x$ in a graph, we can express the assertion, “the component of $x$ is $2$-colorable” by a formula in the language $\possible(L)$. We simply make the same kind of assertion, but drop the requirement that every node gets a color, and insist only that $x$ gets a color and the coloring extends from a node to any neighbor of the node, thereby ensuring the full connected component will be colored.

Theorem. There are two graphs that are elementary equivalent in the language $L$ of graph theory, and hence also in the language $\possible(L)$, but they are not elementarily equivalent in the full modal language $L^\possible$.

Proof. Let $M$ be a graph consisting of disjoint copies of a 3-cycle, a 5-cycle, a 7-cycle, and so on, with one copy of every odd-length cycle. Let $M^*$ be an ultrapower of $M$ by a nonprincipal ultrafilter.

Thus, $M^*$ will continue to have one 3-cycle, one 5-cycle, one 7-cycle and on on, for all the finite odd-length cycles, but then $M^*$ will have what it thinks are non-standard odd-length cycles, except that it cannot formulate the concept of “odd”. What it actually has are a bunch of $\mathbb{Z}$-chains.

In particular, $M^*$ thinks that there is an $x$ whose component is $2$-colorable, since a $\mathbb{Z}$-chain is $2$-colorable.

But $M$ does not think that there is an $x$ whose component is $2$-colorable, because an odd-length finite cycle is not $2$-colorable. $\Box$.

Since we used an ultrapower, the same example also shows that the corollary above does not generalize to the full modal language. That is, we have $M$ embedding elementarily into its ultrapower $M^*$, but it is not elementary in the language $L^\possible$.

Let us finally notice that the Łoś theorem for ultraproducts fails even in the weaker modal language $\possible(L)$.

Theorem. There are models $M_i$ for $i\in\mathbb{N}$ and a sentence $\varphi$ in the language of these models, such that every nonprincipal ultraproduct $\prod_\mu M_i$ satisfies $\possible\varphi$, but no $M_i$ satisfies $\possible\varphi$. .

Proof. In the class of all graphs, using the language of graph theory, let the $M_i$ be all the odd-length cycles. The ultraproduct $\prod_\mu M_i$ consists entirely of $\mathbb{Z}$-chains. In particular, the ultraproduct graph is $2$-colorable, but none of the $M_i$ are $2$-colorable. $\Box$

This will be a talk for the Theory Seminar for the theory research group in Theoretical Computer Science at Queen Mary University of London. The talk will be held 4 June 2019 1:00 pm, ITL first floor.

Abstract. Curious, often paradoxical instances of self-reference inhabit deep parts of computability theory, from the intriguing Quine programs and Ouroboros programs to more profound features of the Gödel phenomenon. In this talk, I shall give an elementary account of the universal algorithm, showing how the capacity for self-reference in arithmetic gives rise to a Turing machine program $e$, which provably enumerates a finite set of numbers, but which can in principle enumerate any finite set of numbers, when it is run in a suitable model of arithmetic. In this sense, every function becomes computable, computed all by the same universal program, if only it is run in the right world. Furthermore, the universal algorithm can successively enumerate any desired extension of the sequence, when run in a suitable top-extension of the universe. An analogous result holds in set theory, where Woodin and I have provided a universal locally definable finite set, which can in principle be any finite set, in the right universe, and which can furthermore be successively extended to become any desired finite superset of that set in a suitable top-extension of that universe.

This will be a talk at the Institute of Logic, Language and Computation (ILLC) at the University of Amsterdam for events May 11-12, 2019. See Joel David Hamkins in Amsterdam 2019.

Abstract: Potentialism can be seen as a fundamentally model-theoretic notion, in play for any class of mathematical structures with an extension concept, a notion of substructure by which one model extends to another. Every such model-theoretic context can be seen as a potentialist framework, a Kripke model whose modal validities one can investigate. In this talk, I’ll explain the tools we have for analyzing the potentialist validities of such a system, with examples drawn from the models of arithmetic and set theory, using the universal algorithm and the universal definition.

This will be a talk for the Jowett Society on 8 February, 2019. The talk will take place in the Oxford Faculty of Philosophy, 3:30 – 5:30pm, in the Lecture Room of the Radcliffe Humanities building.

Abstract. Potentialism is the view, originating in the classical dispute between actual and potential infinity, that one’s mathematical universe is never fully completed, but rather unfolds gradually as new parts of it increasingly come into existence or become accessible or known to us. Recent work emphasizes the modal aspect of potentialism, while decoupling it from arithmetic and from infinity: the essence of potentialism is about approximating a larger universe by means of universe fragments, an idea that applies to set-theoretic as well as arithmetic foundations. The modal language and perspective allows one precisely to distinguish various natural potentialist conceptions in the foundations of mathematics, whose exact modal validities are now known. Ultimately, this analysis suggests a refocusing of potentialism on the issue of convergent inevitability in comparison with radical branching. I shall defend the theses, first, that convergent potentialism is implicitly actualist, and second, that we should understand ultrafinitism in modal terms as a form of potentialism, one with surprising parallels to the case of arithmetic potentialism.

Abstract. Providing a set-theoretic analogue of the universal algorithm, I shall define a certain finite set in set theory
$$\{x\mid\varphi(x)\}$$
and prove that it exhibits a universal extension property: it can be any desired particular finite set in the right set-theoretic universe and it can become successively any desired larger finite set in top-extensions of that universe. Specifically, ZFC proves the set is finite; the definition $\varphi$ has complexity $\Sigma_2$ and therefore any instance of it $\varphi(x)$ is locally verifiable inside any sufficiently large $V_\theta$; the set is empty in any transitive model; and if $\varphi$ defines the set $y$ in some countable model $M$ of ZFC and $y\subset z$ for some finite set $z$ in $M$, then there is a top-extension of $M$ to a model $N$ of ZFC in which $\varphi$ defines the new set $z$. I shall draw out consequences of the universal finite set for set-theoretic potentialism and discuss several issues it raises in the philosophy of set theory.

The talk will include joint work with W. Hugh Woodin, Øystein Linnebo and others.

This will be a talk for the Rutgers Logic Seminar, April 2, 2018. Hill Center, Busch campus.

Abstract. I shall define a certain finite set in set theory $$\{x\mid\varphi(x)\}$$ and prove that it exhibits a universal extension property: it can be any desired particular finite set in the right set-theoretic universe and it can become successively any desired larger finite set in top-extensions of that universe. Specifically, ZFC proves the set is finite; the definition $\varphi$ has complexity $\Sigma_2$ and therefore any instance of it $\varphi(x)$ is locally verifiable inside any sufficient $V_\theta$; the set is empty in any transitive model and others; and if $\varphi$ defines the set $y$ in some countable model $M$ of ZFC and $y\subset z$ for some finite set $z$ in $M$, then there is a top-extension of $M$ to a model $N$ in which $\varphi$ defines the new set $z$. The definition can be thought of as an idealized diamond sequence, and there are consequences for the philosophical theory of set-theoretic top-extensional potentialism.

This was a talk I gave at University College Oxford to the philosophy faculty.

Abstract. One of my favorite situations occurs when philosophical ideas or issues inspire a bit of mathematical analysis, which in turn raises further philosophical questions and ideas, in a fruitful cycle. The topic of potentialism originates, after all, in the classical dispute between actual and potential infinity. Linnebo and Shapiro and others have emphasized the modal nature of potentialism, de-coupling it from infinity: the essence of potentialism is about approximating a larger universe or structure by means of partial structures or universe fragments. In several mathematical projects, my co-authors and I have found the exact modal validities of several natural potentialist concepts arising in the foundations of mathematics, including several kinds of set-theoretic and arithmetic potentialism. Ultimately, the variety of kinds of potentialism suggest a refocusing of potentialism on the issue of convergent inevitability in comparison with radical branching. I defended the theses, first, that convergent potentialism is implicitly actualist, and second, that we should understand ultrafinitism in modal terms as a form of potentialism, one with suprising parallels to the case of arithmetic potentialism.

Here are my lecture notes that I used as a basis for the talk:

For a fuller, more technical account of potentialism, see the three-lecture tutorial series I gave for the Logic Winter School 2018 in Hejnice: Set-theoretic potentialism, and follow the link to the slides.

@ARTICLE{Hamkins:The-modal-logic-of-arithmetic-potentialism,
author = {Joel David Hamkins},
title = {The modal logic of arithmetic potentialism and the universal algorithm},
journal = {ArXiv e-prints},
year = {2018},
volume = {},
number = {},
pages = {1--35},
month = {},
eprint = {1801.04599},
archivePrefix = {arXiv},
primaryClass = {math.LO},
note = {under review},
url = {http://wp.me/p5M0LV-1Dh},
abstract = {},
keywords = {under-review},
source = {},
doi = {},
}

Abstract. Natural potentialist systems arise from the models of arithmetic when they are considered under their various natural extension concepts, such as end-extensions, arbitrary extension, $\Sigma_n$-elementary extensions, conservative extensions and more. For these potentialist systems, I prove, a propositional modal assertion is valid in a model of arithmetic, with respect to assertions in the language of arithmetic with parameters, exactly when it is an assertion of S4. Meanwhile, with respect to sentences, the validities of a model are always between S4 and S5, and these bounds are sharp in that both endpoints are realized. The models validating exactly S5 are the models of the arithmetic maximality principle, which asserts that every possibly necessary statement is already true, and these models are equivalently characterized as those satisfying a maximal $\Sigma_1$ theory. The main proof makes fundamental use of the universal algorithm, of which this article provides a self-contained account.

In this article, I consider the models of arithmetic under various natural extension concepts, including end-extensions, arbitrary extensions, $\Sigma_n$-elementary extensions, conservative extensions and more. Each extension concept gives rise to an arithmetic potentialist system, a Kripke model of possible arithmetic worlds, and the main goal is to discover the modal validities of these systems.

For most of the extension concepts, a modal assertion is valid with respect to assertions in the language of arithmetic, allowing parameters, exactly when it is an assertion of the modal theory S4. For sentences, however, the modal validities form a theory between S4 and S5, with both endpoints being realized. A model of arithmetic validates S5 with respect to sentences just in case it is a model of the arithmetic maximality principle, and these models are equivalently characterized as those realizing a maximal $\Sigma_1$ theory.

The main argument relies fundamentally on the universal algorithm, the theorem due to Woodin that there is a Turing machine program that can enumerate any finite sequence in the right model of arithmetic, and furthermore this model can be end-extended so as to realize any further extension of that sequence available in the model. In the paper, I give a self-contained account of this theorem using my simplified proof.

The paper concludes with philosophical remarks on the nature of potentialism, including a discussion of how the linear inevitability form of potentialism is actually much closer to actualism than the more radical forms of potentialism, which exhibit branching possibility. I also propose to view the philosphy of ultrafinitism in modal terms as a form of potentialism, pushing the issue of branching possibility in ultrafinitism to the surface.

Abstract. I shall introduce and develop the theory of set-theoretic potentialism. A potentialist system is a collection of first-order structures, all in the same language $\mathcal{L}$, equipped with an accessibility relation refining the inclusion relation. Any such system, viewed as an inflationary-domain Kripke model, provides a natural interpretation for the modal extension of the underlying language $\mathcal{L}$ to include the modal operators. We seek to understand a given potentialist system by analyzing which modal assertions are valid in it.

Set theory exhibits an enormous variety of natural potentialist systems. For example, with forcing potentialism, one considers the models of set theory, each accessing its forcing extensions; with rank potentialism, one considers the collection of of rank-initial segments $V_\alpha$ of a given set-theoretic universe; with Grothendieck-Zermelo potentialism, one has the collection of $V_\kappa$ for (a proper class of) inaccessible cardinals $\kappa$; with top-extensional potentialism, one considers the collection of countable models of ZFC under the top-extension relation; and so on with many other natural examples.

In this tutorial, we shall settle the precise potentialist validities of each of these potentialist systems and others, and we shall develop the general tools that enable one to determine the modal theory of a given potentialist system. Many of these arguments proceed by building connections between certain sweeping general features of the models in the potentialist system and certain finite combinatorial objects such as trees or lattices. A key step involves finding certain kinds of independent control statements — buttons, switches, ratchets and rail-switches — in the collection of models.

@ARTICLE{HamkinsWoodin:The-universal-finite-set,
author = {Joel David Hamkins and W. Hugh Woodin},
title = {The universal finite set},
journal = {ArXiv e-prints},
year = {2017},
volume = {},
number = {},
pages = {1--16},
month = {},
note = {manuscript under review},
abstract = {},
keywords = {under-review},
source = {},
doi = {},
eprint = {1711.07952},
archivePrefix = {arXiv},
primaryClass = {math.LO},
url = {http://jdh.hamkins.org/the-universal-finite-set},
}

Abstract. We define a certain finite set in set theory $\{x\mid\varphi(x)\}$ and prove that it exhibits a universal extension property: it can be any desired particular finite set in the right set-theoretic universe and it can become successively any desired larger finite set in top-extensions of that universe. Specifically, ZFC proves the set is finite; the definition $\varphi$ has complexity $\Sigma_2$, so that any affirmative instance of it $\varphi(x)$ is verified in any sufficiently large rank-initial segment of the universe $V_\theta$; the set is empty in any transitive model and others; and if $\varphi$ defines the set $y$ in some countable model $M$ of ZFC and $y\subseteq z$ for some finite set $z$ in $M$, then there is a top-extension of $M$ to a model $N$ in which $\varphi$ defines the new set $z$. Thus, the set shows that no model of set theory can realize a maximal $\Sigma_2$ theory with its natural number parameters, although this is possible without parameters. Using the universal finite set, we prove that the validities of top-extensional set-theoretic potentialism, the modal principles valid in the Kripke model of all countable models of set theory, each accessing its top-extensions, are precisely the assertions of S4. Furthermore, if ZFC is consistent, then there are models of ZFC realizing the top-extensional maximality principle.

Woodin had established the universal algorithm phenomenon, showing that there is a Turing machine program with a certain universal top-extension property in models of arithmetic (see also work of Blanck and Enayat 2017 and upcoming paper of mine with Gitman and Kossak; also my post The universal algorithm: a new simple proof of Woodin’s theorem). Namely, the program provably enumerates a finite set of natural numbers, but it is relatively consistent with PA that it enumerates any particular desired finite set of numbers, and furthermore, if $M$ is any model of PA in which the program enumerates the set $s$ and $t$ is any (possibly nonstandard) finite set in $M$ with $s\subseteq t$, then there is a top-extension of $M$ to a model $N$ in which the program enumerates exactly the new set $t$. So it is a universal finite computably enumerable set, which can in principle be any desired finite set of natural numbers in the right arithmetic universe and become any desired larger finite set in a suitable larger arithmetic universe.

I had inquired whether there is a set-theoretic analogue of this phenomenon, using $\Sigma_2$ definitions in set theory in place of computable enumerability (see The universal definition — it can define any mathematical object you like, in the right set-theoretic universe). The idea was that just as a computably enumerable set is one whose elements are gradually revealed as the computation proceeds, a $\Sigma_2$-definable set in set theory is precisely one whose elements become verified at some level $V_\theta$ of the cumulative set-theoretic hierarchy as it grows. In this sense, $\Sigma_2$ definability in set theory is analogous to computable enumerability in arithmetic.

Main Question. Is there a universal $\Sigma_2$ definition in set theory, one which can define any desired particular set in some model of \ZFC\ and always any desired further set in a suitable top-extension?

I had noticed in my earlier post that one can do this using a $\Pi_3$ definition, or with a $\Sigma_2$ definition, if one restricts to models of a certain theory, such as $V\neq\text{HOD}$ or the eventual GCH, or if one allows $\{x\mid\varphi(x)\}$ sometimes to be a proper class.

Here, we provide a fully general affirmative answer with the following theorem.

Main Theorem. There is a formula $\varphi(x)$ of complexity $\Sigma_2$ in the language of set theory, provided in the proof, with the following properties:

ZFC proves that $\{x\mid \varphi(x)\}$ is a finite set.

In any transitive model of \ZFC\ and others, this set is empty.

If $M$ is a countable model of ZFC in which $\varphi$ defines the set $y$ and $z\in M$ is any finite set in $M$ with $y\subseteq z$, then there is a top-extension of $M$ to a model $N$ in which $\varphi$ defines exactly $z$.

By taking the union of the set defined by $\varphi$, an arbitrary set can be achieved; so the finite-set result as stated in the main theorem implies the arbitrary set case as in the main question. One can also easily deduce a version of the theorem to give a universal countable set or a universal set of some other size (for example, just take the union of the countable elements of the universal set). One can equivalently formulate the main theorem in terms of finite sequences, rather than sets, so that the sequence is extended as desired in the top-extension. The sets $y$ and $z$ in statement (3) may be nonstandard finite, if $M$ if $\omega$-nonstandard.

We use this theorem to establish the fundamental validities of top-extensional set-theoretic potentialism. Specifically, in the potentialist system consisting of the countable models of ZFC, with each accessing its top extensions, the modal validities with respect to substitution instances in the language of set theory, with parameters, are exactly the assertions of S4. When only sentences are considered, the validities are between S4 and S5, with both endpoints realized.

In particular, we prove that if ZFC is consistent, then there is a model $M$ of ZFC with the top-extensional maximality principle: any sentence $\sigma$ in the language of set theory which is true in some top extension $M^+$ and all further top extensions of $M^+$, is already true in $M$.

This principle is true is any model of set theory with a maximal $\Sigma_2$ theory, but it is never true when $\sigma$ is allowed to have natural-number parameters, and in particular, it is never true in any $\omega$-standard model of set theory.

Click through to the arXiv for more, the full article in pdf.

J. D. Hamkins and H. W. Woodin, “The universal finite set,” ArXiv e-prints, pp. 1-16, 2017. (manuscript under review)

This will be a talk for the CUNY Logic Workshop, November 17, 2017, 2pm GC Room 6417.

Abstract. I shall define a certain finite set in set theory $$\{x\mid\varphi(x)\}$$ and prove that it exhibits a universal extension property: it can be any desired particular finite set in the right set-theoretic universe and it can become successively any desired larger finite set in top-extensions of that universe. Specifically, ZFC proves the set is finite; the definition $\varphi$ has complexity $\Sigma_2$ and therefore any instance of it $\varphi(x)$ is locally verifiable inside any sufficient $V_\theta$; the set is empty in any transitive model and others; and if $\varphi$ defines the set $y$ in some countable model $M$ of ZFC and $y\subset z$ for some finite set $z$ in $M$, then there is a top-extension of $M$ to a model $N$ in which $\varphi$ defines the new set $z$. In particular, although there are models of set theory with maximal $\Sigma_2$ theories, nevertheless no model of set theory realizes a maximal $\Sigma_2$ theory with its natural-number parameters. Using the universal finite set, it follows that the validities of top-extensional set-theoretic potentialism, the modal principles valid in the Kripke model of all countable models of set theory, each accessing its top-extensions, are precisely the assertions of S4. Furthermore, if ZFC is consistent, then there are models of ZFC realizing the top-extensional maximality principle.

This will be a talk for the CUNY Logic Workshop at the CUNY Graduate Center, September 8, 2017, 2-3:30, room GC 6417.

Abstract. Consider the collection of all the models of arithmetic under the end-extension relation, which forms a potentialist system for arithmetic, a collection of possible arithmetic worlds or universe fragments, with a corresponding potentialist modal semantics. What are the modal validities? I shall prove that every model of arithmetic validates exactly S4 with respect to assertions in the language of arithmetic allowing parameters, but if one considers sentences only (no parameters), then some models can validate up to S5, thereby fulfilling the arithmetic maximality principle, which asserts for a model $M$ that whenever an arithmetic sentence is true in some end-extension of $M$ and all subsequent end-extensions, then it is already true in $M$. (We also consider other accessibility relations, such as arbitrary extensions or $\Sigma_n$-elementary extensions or end-extensions.)

The proof makes fundamental use of what I call the universal algorithm, a fascinating result due to W. Hugh Woodin, asserting that there is a computable algorithm that can in principle enumerate any desired finite sequence, if only it is undertaken in the right universe, and furthermore any given model of arithmetic can be end-extended so as to realize any desired additional behavior for that universal program. I shall give a simple proof of the universal algorithm theorem and explain how it can be used to determine the potentialist validities of a model of arithmetic. This is current joint work in progress with Victoria Gitman and Roman Kossak, and should be seen as an arithmetic analogue of my recent work on set-theoretic potentialism with Øystein Linnebo. The mathematical program is strongly motivated by philosophical ideas arising in the distinction between actual and potential infinity.

This will be a talk on November 6, 2017 for the Logic and Metaphysics workshop at the CUNY Graduate Center, run by Graham Priest. Room GC 3209.

The modal principles of potentialism in mathematics

Abstract. Potentialism is the view in the philosophy of mathematics that one’s mathematical universe, whether in arithmetic or set theory, is never fully completed, but rather unfolds gradually as new parts of it increasingly come into existence or become accessible or known to us. As in the classical dispute between actual versus potential infinity, the potentialist holds that objects in the upper or outer reaches have potential as opposed to actual existence, in the sense that one can imagine forming or discovering always more objects from that realm, as many as desired, but the task is never completed. Recent work has emphasized the modal aspect of potentialism, and in this talk, I shall describe a general model-theoretic account of the modal logic of potentialism, identifying specific modal principles that hold or fail depending on features of the potentialist system under consideration. This work makes use of modal control statements, such as buttons, switches, dials and ratchets and the connection of these kinds of statements with the modal theories S4, S4.2, S4.3 and S5. I shall take the various natural kinds of arithmetic and set-theoretic potentialism as illustrative cases.