Ehrenfeucht’s lemma in set theory

[bibtex key=FuchsGitmanHamkins2018:EhrenfeuchtsLemmaInSetTheory]

This is joint work with Gunter Fuchs and Victoria Gitman. $\newcommand\HOD{\text{HOD}}\newcommand\Ehrenfeucht{\text{EL}}$

Abstract. Ehrenfeucht’s lemma asserts that whenever one element of a model of Peano arithmetic is definable from another, then they satisfy different types. We consider here the analogue of Ehrenfeucht’s lemma for models of set theory. The original argument applies directly to the ordinal-definable elements of any model of set theory, and in particular, Ehrenfeucht’s lemma holds fully for models of set theory satisfying $V=\HOD$. We show that the lemma can fail, however, in models of set theory with $V\neq\HOD$, and it necessarily fails in the forcing extension to add a generic Cohen real. We go on to formulate a scheme of natural parametric generalizations of Ehrenfeucht’s lemma, namely, the principles of the form $\Ehrenfeucht(A,P,Q)$, which asserts that whenever an object $b$ is definable in $M$ from some $a\in A$ using parameters in $P$, with $b\neq a$, then the types of $a$ and $b$ over $Q$ in $M$ are different. We also consider various analogues of Ehrenfeucht’s lemma obtained by using algebraicity in place of definability, where a set $b$ is \emph{algebraic} in $a$ if it is a member of a finite set definable from $a$ (as in J. D. Hamkins and C. Leahy, Algebraicity and implicit definability in set theory). Ehrenfeucht’s lemma holds for the ordinal-algebraic sets, we prove, if and only if the ordinal-algebraic and ordinal-definable sets coincide. Using similar analysis, we answer two open questions posed in my paper with Leahy, by showing that (i) algebraicity and definability need not coincide in models of set theory and (ii) the internal and external notions of being ordinal algebraic need not coincide.

When does every definable set have a definable member? CUNY Set Theory Seminar, October 2014

This will be a talk for the CUNY set theory seminar, October 10, 2014, 12pm  GC 6417.

Abstract. Although the concept of `being definable’ is not generally expressible in the language of set theory, it turns out that the models of ZF in which every definable nonempty set has a definable element are precisely the models of V=HOD.  Indeed, V=HOD is equivalent to the assertion merely that every $\Pi_2$-definable set has an ordinal-definable element. Meanwhile, this is not true in the case of $\Sigma_2$-definability, because every model of ZFC has a forcing extension satisfying $V\neq\text{HOD}$ in which every $\Sigma_2$-definable set has an ordinal-definable element.

This is joint work with François G. Dorais and Emil Jeřábek, growing out of some questions and answers on MathOverflow, namely,

Definable collections without definable members
A question asked by Ashutosh five years ago, in which François and I gradually came upon the answer together.
Is it consistent that every definable set has a definable member?
A similar question asked last week by (anonymous) user38200
Can $V\neq\text{HOD}$ if every $\Sigma_2$-definable set has an ordinal-definable member?
A question I had regarding the limits of an issue in my answer to the previous question.

In this talk, I shall present the answers to all these questions and place the results in the context of classical results on definability, including a review of basic concepts for graduate students.

Large cardinals need not be large in HOD

[bibtex key=ChengFriedmanHamkins2015:LargeCardinalsNeedNotBeLargeInHOD]

Abstract. We prove that large cardinals need not generally exhibit their large cardinal nature in HOD. For example, a supercompact cardinal $\kappa$ need not be weakly compact in HOD, and there can be a proper class of supercompact cardinals in $V$, none of them weakly compact in HOD, with no supercompact cardinals in HOD. Similar results hold for many other types of large cardinals, such as measurable and strong cardinals.

In this article, we prove that large cardinals need not generally exhibit their large cardinal nature in HOD, the inner model of hereditarily ordinal-definable sets, and there can be a divergence in strength between the large cardinals of the ambient set-theoretic universe $V$ and those of HOD. Our general theme concerns the questions:

Questions.

1. To what extent must a large cardinal in $V$ exhibit its large cardinal properties in HOD?

2. To what extent does the existence of large cardinals in $V$ imply the existence of large cardinals in HOD?

For large cardinal concepts beyond the weakest notions, we prove, the answers are generally negative. In Theorem 4, for example, we construct a model with a supercompact cardinal that is not weakly compact in HOD, and Theorem 9 extends this to a proper class of supercompact cardinals, none of which is weakly compact in HOD, thereby providing some strongly negative instances of (1). The same model has a proper class of supercompact cardinals, but no supercompact cardinals in HOD, providing a negative instance of (2). The natural common strengthening of these situations would be a model with a proper class of supercompact cardinals, but no weakly compact cardinals in HOD. We were not able to arrange that situation, however, and furthermore it would be ruled out by Conjecture 13, an intriguing positive instance of (2) recently proposed by W. Hugh Woodin, namely, that if there is a supercompact cardinal, then there is a measurable cardinal in HOD. Many other natural possibilities, such as a proper class of measurable cardinals with no weakly compact cardinals in HOD, remain as open questions.

CUNY talkRutgers talk | Luminy talk

Local properties in set theory

V_thetaSet-theoretic arguments often make use of the fact that a particular property $\varphi$ is local, in the sense that instances of the property can be verified by checking certain facts in only a bounded part of the set-theoretic universe, such as inside some rank-initial segment $V_\theta$ or inside the collection $H_\kappa$ of all sets of hereditary size less than $\kappa$. It turns out that this concept is exactly equivalent to the property being $\Sigma_2$ expressible in the language of set theory.

Theorem. For any assertion $\varphi$ in the language of set theory, the following are equivalent:

  1. $\varphi$ is ZFC-provably equivalent to a $\Sigma_2$ assertion.
  2. $\varphi$ is ZFC-provably equivalent to an assertion of the form “$\exists \theta\, V_\theta\models\psi$,” where $\psi$ is a statement of any complexity.
  3. $\varphi$ is ZFC-provably equivalent to an assertion of the form “$\exists \kappa\, H_\kappa\models\psi$,” where $\psi$ is a statement of any complexity.

Just to clarify, the $\Sigma_2$ assertions in set theory are those of the form $\exists x\,\forall y\,\varphi_0(x,y)$, where $\varphi_0$ has only bounded quantifiers. The set $V_\theta$ refers to the rank-initial segment of the set-theoretic universe, consisting of all sets of von Neumann rank less than $\theta$. The set $H_\kappa$ consists of all sets of hereditary size less than $\kappa$, that is, whose transitive closure has size less than $\kappa$.

Proof. ($3\to 2$) Since $H_\kappa$ is correctly computed inside $V_\theta$ for any $\theta>\kappa$, it follows that to assert that some $H_\kappa$ satisfies $\psi$ is the same as to assert that some $V_\theta$ thinks that there is some cardinal $\kappa$ such that $H_\kappa$ satisfies $\psi$.

($2\to 1$) The statement $\exists \theta\, V_\theta\models\psi$ is equivalent to the assertion $\exists\theta\,\exists x\,(x=V_\theta\wedge x\models\psi)$. The claim that $x\models\psi$ involves only bounded quantifiers, since the quantifiers of $\psi$ become bounded by $x$. The claim that $x=V_\theta$ is $\Pi_1$ in $x$ and $\theta$, since it is equivalent to saying that $x$ is transitive and the ordinals of $x$ are precisely $\theta$ and $x$ thinks every $V_\alpha$ exists, plus a certain minimal set theory (so far this is just $\Delta_0$, since all quantifiers are bounded), plus, finally, the assertion that $x$ contains every subset of each of its elements. So altogether, the assertion that some $V_\theta$ satisfies $\psi$ has complexity $\Sigma_2$ in the language of set theory.

($1\to 3$) This implication is a consequence of the following absoluteness lemma.

Lemma. (Levy) If $\kappa$ is any uncountable cardinal, then $H_\kappa\prec_{\Sigma_1} V$.

Proof. Suppose that $x\in H_\kappa$ and $V\models\exists y\,\psi(x,y)$, where $\psi$ has only bounded quantifiers. Fix some such witness $y$, which exists inside some $H_\gamma$ for perhaps much larger $\gamma$. By the Löwenheim-Skolem theorem, there is $X\prec H_\gamma$ with $\text{TC}(\{x\})\subset X$, $y\in X$ and $X$ of size less than $\kappa$. Let $\pi:X\cong M$ be the Mostowski collapse of $X$, so that $M$ is transitive, and since it has size less than $\kappa$, it follows that $M\subset H_\kappa$. Since the transitive closure of $\{x\}$ was contained in $X$, it follows that $\pi(x)=x$. Thus, since $X\models\psi(x,y)$ we conclude that $M\models \psi(x,\pi(y))$ and so hence $\pi(y)$ is a witness to $\psi(x,\cdot)$ inside $H_\kappa$, as desired. QED

Using the lemma, we now prove the remaining part of the theorem. Consider any $\Sigma_2$ assertion $\exists x\,\forall y\, \varphi_0(x,y)$, where $\varphi_0$ has only bounded quantifiers. This assertion is equivalent to $\exists\kappa\, H_\kappa\models\exists x\,\forall y\,\varphi_0(x,y)$, simply because if there is such a $\kappa$ with $H_\kappa$ having such an $x$, then by the lemma this $x$ works for all $y\in V$ since $H_\kappa\prec_{\Sigma_1}V$; and conversely, if there is an $x$ such that $\forall y\, \varphi_0(x,y)$, then this will remain true inside any $H_\kappa$ with $x\in H_\kappa$. QED

In light of the theorem, it makes sense to refer to the $\Sigma_2$ properties as the locally verifiable properties, or perhaps as semi-local properties, since positive instances of $\Sigma_2$ assertions can be verified in some sufficiently large $V_\theta$, without need for unbounded search. A truly local property, therefore, would be one such that positive and negative instances can be verified this way, and these would be precisely the $\Delta_2$ properties, whose positive and negative instances are locally verifiable.

Tighter concepts of locality are obtained by insisting that the property is not merely verified in some $V_\theta$, perhaps very large, but rather is verified in a $V_\theta$ where $\theta$ has a certain closeness to the parameters or instance of the property. For example, a cardinal $\kappa$ is measurable just in case there is a $\kappa$-complete nonprincipal ultrafilter on $\kappa$, and this is verified inside $V_{\kappa+2}$. Thus, the assertion “$\kappa$ is measurable,” has complexity $\Sigma^2_1$ over $V_\kappa$. One may similarly speak of $\Sigma^n_m$ or $\Sigma^\alpha_m$ properties, to refer to properties that can be verified with $\Sigma_m$ assertions in $V_{\kappa+\alpha}$. Alternatively, for any class function $f$ on the ordinals, one may speak of $f$-local properties, meaning a property that can be checked of $x\in V_\theta$ by checking a property inside $V_{f(\theta)}$.

This post was made in response to a question on MathOverflow.

Satisfaction is not absolute

[bibtex key=HamkinsYang:SatisfactionIsNotAbsolute]$\newcommand\N{\mathbb{N}}\newcommand\satisfies{\models}$

Abstract. We prove that the satisfaction relation $\mathcal{N}\satisfies\varphi[\vec a]$ of first-order logic is not absolute between models of set theory having the structure $\mathcal{N}$ and the formulas $\varphi$ all in common. Two models of set theory can have the same natural numbers, for example, and the same standard model of arithmetic $\langle\N,{+},{\cdot},0,1,{\lt}\rangle$, yet disagree on their theories of arithmetic truth; two models of set theory can have the same natural numbers and the same arithmetic truths, yet disagree on their truths-about-truth, at any desired level of the iterated truth-predicate hierarchy; two models of set theory can have the same natural numbers and the same reals, yet disagree on projective truth; two models of set theory can have the same $\langle H_{\omega_2},{\in}\rangle$ or the same rank-initial segment $\langle V_\delta,{\in}\rangle$, yet disagree on which assertions are true in these structures.

On the basis of these mathematical results, we argue that a philosophical commitment to the determinateness of the theory of truth for a structure cannot be seen as a consequence solely of the determinateness of the structure in which that truth resides. The determinate nature of arithmetic truth, for example, is not a consequence of the determinate nature of the arithmetic structure $\N=\{ 0,1,2,\ldots\}$ itself, but rather, we argue, is an additional higher-order commitment requiring its own analysis and justification.

Many mathematicians and philosophers regard the natural numbers $0,1,2,\ldots\,$, along with their usual arithmetic structure, as having a privileged mathematical existence, a Platonic realm in which assertions have definite, absolute truth values, independently of our ability to prove or discover them. Although there are some arithmetic assertions that we can neither prove nor refute—such as the consistency of the background theory in which we undertake our proofs—the view is that nevertheless there is a fact of the matter about whether any such arithmetic statement is true or false in the intended interpretation. The definite nature of arithmetic truth is often seen as a consequence of the definiteness of the structure of arithmetic $\langle\N,{+},{\cdot},0,1,{\lt}\rangle$ itself, for if the natural numbers exist in a clear and distinct totality in a way that is unambiguous and absolute, then (on this view) the first-order theory of truth residing in that structure—arithmetic truth—is similarly clear and distinct.

Feferman provides an instance of this perspective when he writes (Feferman 2013, Comments for EFI Workshop, p. 6-7) :

In my view, the conception [of the bare structure of the natural numbers] is completely clear, and thence all arithmetical statements are definite.

It is Feferman’s `thence’ to which we call attention.  Martin makes a similar point (Martin, 2012, Completeness or incompleteness of basic mathematical concepts):

What I am suggesting is that the real reason for confidence in first-order completeness is our confidence in the full determinateness of the concept of the natural numbers.

Many mathematicians and philosophers seem to share this perspective. The truth of an arithmetic statement, to be sure, does seem to depend entirely on the structure $\langle\N,{+},{\cdot},0,1,{\lt}\rangle$, with all quantifiers restricted to $\N$ and using only those arithmetic operations and relations, and so if that structure has a definite nature, then it would seem that the truth of the statement should be similarly definite.

Nevertheless, in this article we should like to tease apart these two ontological commitments, arguing that the definiteness of truth for a given mathematical structure, such as the natural numbers, the reals or higher-order structures such as $H_{\omega_2}$ or $V_\delta$, does not follow from the definite nature of the underlying structure in which that truth resides. Rather, we argue that the commitment to a theory of truth for a structure is a higher-order ontological commitment, going strictly beyond the commitment to a definite nature for the underlying structure itself.

We make our argument in part by proving that different models of set theory can have a structure identically in common, even the natural numbers, yet disagree on the theory of truth for that structure.

Theorem.

  • Two models of set theory can have the same structure of arithmetic $$\langle\N,{+},{\cdot},0,1,{\lt}\rangle^{M_1}=\langle\N,{+},{\cdot},0,1,{\lt}\rangle^{M_2},$$yet disagree on the theory of arithmetic truth.
  • Two models of set theory can have the same natural numbers and a computable linear order in common, yet disagree about whether it is a well-order.
  • Two models of set theory that have the same natural numbers and the same reals, yet disagree on projective truth.
  • Two models of set theory can have a transitive rank initial segment in common $$\langle V_\delta,{\in}\rangle^{M_1}=\langle V_\delta,{\in}\rangle^{M_2},$$yet disagree about whether it is a model of ZFC.

The proofs use only elementary classical methods, and might be considered to be a part of the folklore of the subject of models of arithmetic. The paper includes many further examples of the phenomenon, and concludes with a philosophical discussion of the issue of definiteness, concerning the question of whether one may deduce definiteness-of-truth from definiteness-of-objects and definiteness-of-structure.

 

Exploring the Frontiers of Incompleteness, Harvard, August 2013

I will be participating in the culminating workshop of the Exploring the Frontiers of Incompleteness conference series at Harvard University, to take place August 31-September 1, 2013.  Rather than conference talks, the program will consist of extended discussion sessions by the participants of the year-long series, with the discussion framed by very brief summary presentations.  Peter Koellner asked me to prepare such a presentation on the multiverse conception, and you can see the slides in The multiverse perspective in set theory (Slides).

My previous EFI talk was The multiverse perspective on determinateness in set theory, based in part on my paper The set-theoretical multiverse.

Algebraicity and implicit definability in set theory

[bibtex key=HamkinsLeahy2016:AlgebraicityAndImplicitDefinabilityInSetTheory]

We aim in this article to analyze the effect of replacing several natural uses of definability in set theory by the weaker model-theoretic notion of algebraicity and its companion concept of implicit definability. In place of the class HOD of hereditarily ordinal definable sets, for example, we consider the class HOA of hereditarily ordinal-algebraic sets. In place of the pointwise definable models of set theory, we examine its (pointwise) algebraic models. And in place of Gödel’s constructible universe L, obtained by iterating the definable power set operation, we introduce the implicitly constructible universe Imp, obtained by iterating the algebraic or implicitly definable power set operation. In each case we investigate how the change from definability to algebraicity affects the nature of the resulting concept. We are especially intrigued by Imp, for it is a new canonical inner model of ZF whose subtler properties are just now coming to light. Open questions about Imp abound.

Before proceeding further, let us review the basic definability definitions. In the model theory of first-order logic, an element $a$ is definable in a structure $M$ if it is the unique object in $M$ satisfying some first-order property $\varphi$ there, that is, if $M\models\varphi[b]$ just in case $b=a$. More generally, an element $a$ is algebraic in $M$ if it has a property $\varphi$ exhibited by only finitely many objects in $M$, so that $\{b\in M \mid M\models\varphi[b]\}$ is a finite set containing $a$. For each class $P\subset M$ we can similarly define what it means for an element to be $P$-definable or $P$-algebraic by allowing the formula $\varphi$ to have parameters from $P$.

In the second-order context, a subset or class $A\subset M^n$ is said to be definable in $M$, if $A=\{\vec a\in M\mid M\models\varphi[\vec a]\}$ for some first-order formula $\varphi$. In particular, $A$ is the unique class in $M^n$ with $\langle M,A\rangle\models\forall \vec x\, [\varphi(\vec x)\iff A(\vec x)]$, in the language where we have added a predicate symbol for $A$. Generalizing this condition, we say that a class $A\subset M^n$ is implicitly definable in $M$ if there is a first-order formula $\psi(A)$ in the expanded language, not necessarily of the form $\forall \vec x\, [\varphi(\vec x)\iff A(\vec x)]$, such that $A$ is unique such that $\langle M,A\rangle\models\psi(A)$. Thus, every (explicitly) definable class is also implicitly definable, but the converse can fail. Even more generally, we say that a class $A\subset M^n$ is algebraic in $M$ if there is a first-order formula $\psi(A)$ in the expanded language such that $\langle M,A\rangle\models\psi(A)$ and there are only finitely many $B\subset M^n$ for which $\langle M,B\rangle\models\psi(B)$. Allowing parameters from a fixed class $P\subset M$ to appear in $\psi$ yields the notions of $P$-definability, implicit $P$-definability, and $P$-algebraicity in $M$. Simplifying the terminology, we say that $A$ is definable, implicitly definable, or algebraic over (rather than in) $M$ if it is $M$-definable, implicitly $M$-definable, or $M$-algebraic in $M$, respectively. A natural generalization of these concepts arises by allowing second-order quantifiers to appear in $\psi$. Thus we may speak of a class $A$ as second-order definable, implicitly second-order definable, or second-order algebraic. Further generalizations are of course possible by allowing $\psi$ to use resources from other strong logics.

The main theorems of the paper are:

Theorem. The class of hereditarily ordinal algebraic sets is the same as the class of hereditarily ordinal definable sets: $$\text{HOA}=\text{HOD}.$$

Theorem. Every pointwise algebraic model of ZF is a pointwise definable model of ZFC+V=HOD.

In the latter part of the paper, we introduce what we view as the natural algebraic analogue of the constructible universe, namely, the implicitly constructible universe, denoted Imp, and built as follows:

$$\text{Imp}_0 = \emptyset$$

$$\text{Imp}_{\alpha + 1} = P_{imp}(\text{Imp}_\alpha)$$

$$\text{Imp}_\lambda = \bigcup_{\alpha < \lambda} \text{Imp}_\alpha, \text{ for limit }\lambda$$

$$\text{Imp} = \bigcup_\alpha \text{Imp}_\alpha.$$

Theorem.  Imp is an inner model of ZF with $L\subset\text{Imp}\subset\text{HOD}$.

Theorem.  It is relatively consistent with ZFC that $\text{Imp}\neq L$.

Theorem. In any set-forcing extension $L[G]$ of $L$, there is a further extension $L[G][H]$ with $\text{gImp}^{L[G][H]}=\text{Imp}^{L[G][H]}=L$.

Open questions about Imp abound. Can $\text{Imp}^{\text{Imp}}$ differ from $\text{Imp}$? Does $\text{Imp}$ satisfy the axiom of choice? Can $\text{Imp}$ have measurable cardinals? Must $0^\sharp$ be in $\text{Imp}$ when it exists? (An affirmative answer arose in conversation with Menachem Magidor and Gunter Fuchs, and we hope that $\text{Imp}$ will subsume further large cardinal features. We anticipate a future article on the implicitly constructible universe.)  Which large cardinals are absolute to $\text{Imp}$? Does $\text{Imp}$ have fine structure? Should we hope for any condensation-like principle? Can CH or GCH fail in $\text{Imp}$? Can reals be added at uncountable construction stages of $\text{Imp}$? Can we separate $\text{Imp}$ from HOD? How much can we control $\text{Imp}$ by forcing? Can we put arbitrary sets into the $\text{Imp}$ of a suitable forcing extension? What can be said about the universe $\text{Imp}(\mathbb{R})$ of sets implicitly constructible relative to $\mathbb{R}$ and, more generally, about $\text{Imp}(X)$ for other sets $X$? Here we hope at least to have aroused interest in these questions.

This article arose from a question posed on MathOverflow by my co-author Cole Leahy and our subsequent engagement with it.

Algebraicity and implicit definability in set theory, CUNY, May 2013

This is a talk May 10, 2013 for the CUNY Set Theory Seminar.

Abstract.  An element a is definable in a model M if it is the unique object in M satisfying some first-order property. It is algebraic, in contrast, if it is amongst at most finitely many objects satisfying some first-order property φ, that is, if { b | M satisfies φ[b] } is a finite set containing a. In this talk, I aim to consider the situation that arises when one replaces the use of definability in several parts of set theory with the weaker concept of algebraicity. For example, in place of the class HOD of all hereditarily ordinal-definable sets, I should like to consider the class HOA of all hereditarily ordinal algebraic sets. How do these two classes relate? In place of the study of pointwise definable models of set theory, I should like to consider the pointwise algebraic models of set theory. Are these the same? In place of the constructible universe L, I should like to consider the inner model arising from iterating the algebraic (or implicit) power set operation rather than the definable power set operation. The result is a highly interesting new inner model of ZFC, denoted Imp, whose properties are only now coming to light. Is Imp the same as L? Is it absolute? I shall answer all these questions at the talk, but many others remain open.

This is joint work with Cole Leahy (MIT).

NYlogic abstract | MathOverflow post

Jonas Reitz

Jonas Reitz earned his Ph.D under my supervision in June, 2006 at the CUNY Graduate Center.  He was truly a pleasure to supervise. From the earliest days of his dissertation research, he had his own plan for the topic of the work: he wanted to “undo” forcing, to somehow force backwards, from the extension to the ground model. At first I was skeptical, but in time, ideas crystalized around the ground axiom (now with its own Wikipedia entry), formulated using a recent-at-the-time result of Richard Laver.  Along with Laver’s theorem, Jonas’s dissertation was the beginning of the body of work now known as set-theoretic geology.  Jonas holds a tenured position at the New York City College of Technology of CUNY.

Jonas Reitz


web page | math genealogy | MathSciNet | ar$\chi$iv | google scholar | related posts

Jonas Reitz, “The ground axiom,” Ph.D. dissertation, CUNY Graduate Center, June, 2006.  ar$\chi$iv

Abstract.  A new axiom is proposed, the Ground Axiom, asserting that the universe is not a nontrivial set-forcing extension of any inner model. The Ground Axiom is first-order expressible, and any model of ZFC has a class-forcing extension which satisfies it. The Ground Axiom is independent of many well-known set-theoretic assertions including the Generalized Continuum Hypothesis, the assertion V=HOD that every set is ordinal definable, and the existence of measurable and supercompact cardinals. The related Bedrock Axiom, asserting that the universe is a set-forcing extension of a model satisfying the Ground Axiom, is also first-order expressible, and its negation is consistent. As many of these results rely on forcing with proper classes, an appendix is provided giving an exposition of the underlying theory of proper class forcing.

The mate-in-n problem of infinite chess is decidable, Cambridge, June 2012

This will be a contributed talk at the Turing Centenary Conference CiE 2012 held June 18-23, 2012 in Cambridge, UK.

Abstract.  The mate-in-$n$ problem of infinite chess—chess played on an infinite edgeless board—is the problem of determining whether a designated player can force a win from a given finite position in at most $n$ moves. Although a straightforward formulation of this problem leads to assertions of high arithmetic complexity, with $2n$ alternating quantifiers,  the main theorem of this article nevertheless confirms a conjecture of the second author and C. D. A. Evans by establishing that it is computably decidable, uniformly in the position and in $n$. Furthermore, there is a computable strategy for optimal play from such mate-in-$n$ positions. The proof proceeds by showing that the mate-in-$n$ problem is expressible in what we call the first-order structure of chess $\frak{Ch}$, which we prove (in the relevant fragment) is an automatic structure, whose theory is therefore decidable. The structure is also definable in Presburger arithmetic. Unfortunately, this resolution of the mate-in-$n$ problem does not appear to settle the decidability of the more general winning-position problem, the problem of determining whether a designated player has a winning strategy from a given position, since a position may admit a winning strategy without any bound on the number of moves required. This issue is connected with transfinite game values in infinite chess, and the exact value of the omega one of chess $\omega_1^{\rm chess}$ is not known.

Article | Slides | CiE 2012 | Contributed talk schedule

The omega one of infinite chess, New York, 2012

This will be a talk on May 18, 2012 for the CUNY Set Theory Seminar.

Infinite chess is chess played on an infinite edgeless chessboard. The familiar chess pieces move about according to their usual chess rules, and each player strives to place the opposing king into checkmate.  The mate-in-$n$ problem of infinite chess is the problem of determining whether a designated player can force a win from a given finite position in at most $n$ moves.  A naive formulation of this problem leads to assertions of high arithmetic complexity with $2n$ alternating quantifiers—there is a move for white, such that for every black reply, there is a countermove for white, and so on. In such a formulation, the problem does not appear to be decidable; and one cannot expect to search an infinitely branching game tree even to finite depth. Nevertheless, in joint work with Dan Brumleve and Philipp Schlicht, confirming a conjecture of myself and C. D. A. Evans, we establish that the mate-in-$n$ problem of infinite chess is computably decidable, uniformly in the position and in $n$. Furthermore, there is a computable strategy for optimal play from such mate-in-$n$ positions. The proof proceeds by showing that the mate-in-$n$ problem is expressible in what we call the first-order structure of chess, which we prove (in the relevant fragment) is an automatic structure, whose theory is therefore decidable.  An equivalent account of the result arises from the realization that the structure of chess is interpretable in the standard model of Presburger arithmetic $\langle\mathbb{N},+\rangle$.  Unfortunately, this resolution of the mate-in-$n$ problem does not appear to settle the decidability of the more general winning-position problem, the problem of determining whether a designated player has a winning strategy from a given position, since a position may admit a winning strategy without any bound on the number of moves required. This issue is connected with transfinite game values in infinite chess, and the exact value of the omega one of chess $\omega_1^{\rm chess}$ is not known. I will also discuss recent joint work with C. D. A. Evans and W. Hugh Woodin showing that the omega one of infinite positions in three-dimensional infinite chess is true $\omega_1$: every countable ordinal is realized as the game value of such a position.

article | slides

Must there be numbers we cannot describe or define? Pointwise definability and the Math Tea argument, Bristol, April 2012

This is a talk I plan to give to the set theory seminar at the University of Bristol on April 18, 2012.

An old argument, heard at a good math tea, proceeds: “there must be some real numbers that we can neither describe nor define, since there are uncountably many reals, but only countably many definitions.” Does it withstand scrutiny? In this talk, I will discuss the phenomenon of pointwise definable models of set theory, in which every object is definable without parameters. In addition to classical and folklore results on the existence of pointwise definable models of set theory, the main new theorem is that every countable model of ZFC and indeed of GBC has an extension to a model of set theory with the same ordinals, in which every set and class is definable without parameters. This is joint work with Jonas Reitz and David Linetsky, and builds on work of S. Simpson, R. Kossak, J. Schmerl, S. Friedman and A. Enayat.

slides | article

Must there be non-definable numbers? Pointwise definability and the math-tea argument, KGRC, Vienna 2011

This talk will be a part of the “Advanced Introduction” series for graduate students at the the Kurt Gödel Research Center, November 4, 2011.

An old argument, heard perhaps at math tea, proceeds: “there must be some real numbers that we can neither describe nor define, since there are uncountably many reals, but only countably many definitions.” Does it withstand scrutiny? In this talk, I will discuss the phenomenon of pointwise definable models of set theory, in which every object is definable without parameters. In addition to classical and folklore results on the existence of pointwise definable models of set theory, the main new theorem is that every countable model of ZFC and indeed of GBC has an extension to a model of set theory with the same ordinals, in which every set and class is definable without parameters. This is joint work with Jonas Reitz and David Linetsky, and builds on work of S. Simpson, R. Kossak, J. Schmerl, S. Friedman and A. Enayat.

Slides | Article

Pointwise definable models of set theory

[bibtex key=HamkinsLinetskyReitz2013:PointwiseDefinableModelsOfSetTheory]

One occasionally hears the argument—let us call it the math-tea argument, for perhaps it is heard at a good math tea—that there must be real numbers that we cannot describe or define, because there are are only countably many definitions, but uncountably many reals.  Does it withstand scrutiny?

This article provides an answer.  The article has a dual nature, with the first part aimed at a more general audience, and the second part providing a proof of the main theorem:  every countable model of set theory has an extension in which every set and class is definable without parameters.  The existence of these models therefore exhibit the difficulties in formalizing the math tea argument, and show that robust violations of the math tea argument can occur in virtually any set-theoretic context.

A pointwise definable model is one in which every object is definable without parameters. In a model of set theory, this property strengthens V=HOD, but is not first-order expressible. Nevertheless, if ZFC is consistent, then there are continuum many pointwise definable models of ZFC. If there is a transitive model of ZFC, then there are continuum many pointwise definable transitive models of ZFC. What is more, every countable model of ZFC has a class forcing extension that is pointwise definable. Indeed, for the main contribution of this article, every countable model of Godel-Bernays set theory has a pointwise definable extension, in which every set and class is first-order definable without parameters.

The ground axiom is consistent with $V\ne{\rm HOD}$

[bibtex key=HamkinsReitzWoodin2008:TheGroundAxiomAndVequalsHOD]

Abstract. The Ground Axiom asserts that the universe is not a nontrivial set-forcing extension of any inner model. Despite the apparent second-order nature of this assertion, it is first-order expressible in set theory. The previously known models of the Ground Axiom all satisfy strong forms of $V=\text{HOD}$. In this article, we show that the Ground Axiom is relatively consistent with $V\neq\text{HOD}$. In fact, every model of ZFC has a class-forcing extension that is a model of $\text{ZFC}+\text{GA}+V\neq\text{HOD}$. The method accommodates large cardinals: every model of ZFC with a supercompact cardinal, for example, has a class-forcing extension with $\text{ZFC}+\text{GA}+V\neq\text{HOD}$ in which this supercompact cardinal is preserved.