Book review of The Higher Infinite, Akihiro Kanamori

[bibtex key=Hamkins2000:BookReviewKanamori]

Akihiro Kanamori. The Higher Infinite.    Large cardinals, stealing upwards through the clouds of imagined limitation like the steel skyscrapers of a ever-growing set-theoretic skyline, reach towards the stratosphere of Cantor’s absolute. In this century we have axiomatized larger and larger notions of infinity, and as we live amongst these giants, the formerly tall now seem small. Weakly inaccessible cardinals, for example, first considered by Hausdorff as a natural transfinite limit of set-theoretic operations, now occupy a floor at the entryway to the large cardinal hierarchy. In time over the past century we had Mahlo cardinals, strongly inaccessible cardinals, measurable cardinals, indescribable cardinals, weakly-compact cardinals, strongly-compact cardinals, super-compact cardinals, huge cardinals, almost huge cardinals, superhuge cardinals, and so on. And while when it comes to naming these enormous magnitudes, words have perhaps failed us, the mathematics is perfectly precise and fascinating.

Professor Kanamori has written—beautifully so—the book we large cardinal set-theorists have been lacking, a book spanning the possibilities from inaccessible to superhuge cardinals and beyond, a book full of historical insight, clear writing, interesting theorems and elegant proofs. This book is destined to become, if it has not already become, the standard reference in its field.

Finding that “a genetic account through historical progression…provides the most coherent exposition of the mathematics and holds the key to any epistemological concerns,” (p. XI) Kanamori weaves a historical perspective into the mathematics, deepening our understanding and appreciation of it. He sprinkles the text with quotations of Gödel and others, giving their mathematical-philosophical views on the mathematical developments. The introduction stands alone as a non-technical essay introducing the entire subject. From there, Kanamori begins with the smaller large cardinals, inaccessible and Mahlo cardinals, and then moves in time up to the strongest hypotheses.

So let me begin to explain a little about large cardinals. A cardinal κ is inaccessible when it cannot be constructed from smaller cardinals, so that first, it is not the supremum of fewer than κ many cardinals each of size less than κ (as, for example, ω=supnn is), and second, it cannot be reached by the power set operation in the sense that whenever δ is smaller than κ then 2δ is also smaller than κ. It is relatively straightforward to show that if κ is inaccessible, then Vκ is a model of ZFC. In particular, if κ is the least inaccessible cardinal, then Vκ will be a model of ZFC in which there are no inaccessible cardinals. So it is relatively consistent with ZFC that there are no large cardinals at all. Furthermore, since the mere existence of an inaccessible cardinal provides a full model of ZFC, we cannot hope even for a relative consistency result of the form “If ZFC is consistent, then so is ZFC + there is an inaccessible cardinal” (in the manner of results proved for the Continuum Hypothesis and the Axiom of Choice), for then the theory “ZFC + there is an inaccessible cardinal” would imply its own consistency, contrary to Gödel’s Incompleteness Theorem. In short, the consistency strength of the existence of an inaccessible cardinal is greater than that of ZFC alone. At first glance, then, the logical status of the existence of even the smallest of the large cardinals is a bit startling: we can’t prove they exist; it is consistent that they don’t exist; and we can prove that we cannot prove that their existence is relatively consistent. What, then, is the point of them?

The point is that such a transcendence over ZFC in consistency strength is exactly what we want and what we need. In the decades since the invention of Cohen’s forcing technique, set theorists have set marching an infinite parade of independence results; indeed, it often seems as though almost all the interesting set-theoretic questions are independent of our ZFC axioms. We all know now that the cardinality of the set R of reals can be 1 or 2 or 1776 or ω+1776 or any cardinal you like within reason, and this unfinished nature of ZFC when it comes to basic set theoretic questions is the norm. We have learned in this sense that ZFC is a weak theory. The large cardinal axioms provide strengthenings of it, strengthenings which are fundamentally different from the strengthenings of ZFC provided by the Continuum Hypothesis, the Generalized Continuum Hypothesis, Souslin’s Hypothesis, Martin’s Axiom and many of the other principles that we know to properly extend ZFC, in that large cardinals transcend even the consistency strength of ZFC. The large cardinal hierarchy, therefore, in addition to its intrinsic mathematical interest, provides a natural structure which can be used to gauge the consistency strength of general mathematical propositions.

Let me give one example. Almost all mathematicians are familiar with Vitali’s construction of a non-Lebesgue measurable set of reals and furthermore believe that the construction makes an essential use of the Axiom of Choice AC. But what does this mean exactly? The impossibility of removing AC from the Vitali construction is equivalent to the consistency (without AC) that every set of reals is Lebesgue measurable. Now of course we need some choice principle to develop a satisfactory theory of Lebesgue measure at all, so let us keep in the base theory the principle of Dependent Choices DC, which allows us to make countably many choices in succession. Thus, we are led to consider the consistency of the theory T= “ZF + DC + every set of reals is Lebesgue measurable”. Solovay [65] proved that if ZFC is consistent with the existence of an inaccessible cardinal, then T is consistent; that is, if inaccessible cardinals are consistent, then we are perfectly correct in believing that you cannot remove AC from Vitali’s construction. Since most mathematicians already believed this conclusion, Solovay’s use of an inaccessible cardinal was widely seen as a defect in his argument. But Shelah [84] exploded this criticism by proving conversely that if T is consistent, then so is the existence of an inaccessible cardinal. That is, the two theories are equiconsistent, and we should be exactly as confident in the consistency of inaccessible cardinals as we are in our belief that Vitali’s use of AC is essential.

After the beginnings, Kanamori moves swiftly through a chapter on partition properties, weak compactness, indiscernibles and 0, before moving into a longer chapter on forcing and sets of reals, in which he introduces forcing, Lebesgue measurability and topics from descriptive set theory. Next, in Chapter Four, he approaches measurability from the direction of saturated ideals, including such topics as Prikry forcing, iterated ultrapower embeddings, the inner model L[μ], 0 and, curiously, a chess problem for the solution of which he will pay a small prize. The strongest hypotheses appear in Chapter five along with the combinatorial backup needed to support them. Kanamori concludes in Chapter six with the Axiom of Determinacy, giving such connections to large cardinals as can be easily given, and, whetting the appetite of the eager student, surveying the more recent, more difficult, and more amazing results.

Kanamori’s book has already been translated into Japanese by S. Fuchino, and judging by the graduate students I saw last year in Japan pouring over it, the translation seems destined to create a new generation of large cardinal set theorists in Japan.

I do have one reservation about Kanamori’s book, namely, that he didn’t include much material on the interaction between forcing and large cardinals. Admittedly, this being the focus of much of my own work, I harbor some bias in its favor, but the topics of forcing and large cardinals are two major set theoretic research areas, and the intersection is rich. It would have been relatively easy for Kanamori to include a presentation, for example, of the landmark Laver preparation, by which any supercompact cardinal κ becomes indestructible by κ-directed closed forcing. And Laver’s result is really just the beginning of the investigation of how large cardinals are affected by forcing. I trust that much of this work will appear in volume II.

My overall evaluation is entirely positive, and I recommend the book in the strongest possible terms to anyone with an interest in large cardinals. I can hardly wait for the subsequent volume!

[84] Saharon Shelah, “Can you take Solovay’s inaccessible away?” IJM 48 (1984), 1-47.

[65] Robert M. Solovay, “The measure problem,” NAMS 12 (1965), 217.

Gap forcing: generalizing the Lévy-Solovay theorem

[bibtex key=Hamkins99:GapForcingGen]

The landmark Levy-Solovay Theorem limits the kind of large cardinal embeddings that can exist in a small forcing extension. Here I announce a generalization of this theorem to a broad new class of forcing notions. One consequence is that many of the forcing iterations most commonly found in the large cardinal literature create no new weakly compact cardinals, measurable cardinals, strong cardinals, Woodin cardinals, strongly compact cardinals, supercompact cardinals, almost huge cardinals, huge cardinals, and so on.

Universal indestructibility

[bibtex key=ApterHamkins99:UniversalIndestructibility]

From a suitable large cardinal hypothesis, we provide a model with a supercompact cardinal in which universal indestructibility holds: every supercompact and partially supercompact cardinal kappa is fully indestructible by kappa-directed closed forcing. Such a state of affairs is impossible with two supercompact cardinals or even with a cardinal which is supercompact beyond a measurable cardinal.

Superdestructibility: a dual to Laver's indestructibility

[bibtex key=HamkinsShelah98:Dual]

After small forcing, any <κ-closed forcing will destroy the supercompactness, even the strong compactness, of κ.

Small forcing makes any cardinal superdestructible

[bibtex key=Hamkins98:SmallForcing]

Destruction or preservation as you like it

[bibtex key=Hamkins98:AsYouLikeIt]

The Gap Forcing Theorem, a key contribution of this paper, implies essentially that after any reverse Easton iteration of closed forcing, such as the Laver preparation, every supercompactness measure on a supercompact cardinal extends a measure from the ground model. Thus, such forcing can create no new supercompact cardinals, and, if the GCH holds, neither can it increase the degree of supercompactness of any cardinal; in particular, it can create no new measurable cardinals. In a crescendo of what I call exact preservation theorems, I use this new technology to perform a kind of partial Laver preparation, and thereby finely control the class of posets which preserve a supercompact cardinal. Eventually, I prove the ‘As You Like It’ Theorem, which asserts that the class of <κ-directed closed posets which preserve a supercompact cardinal κ can be made by forcing to conform with any pre-selected local definition which respects the equivalence of forcing. Along the way I separate completely the levels of the superdestructibility hierarchy, and, in an epilogue, prove that the notions of fragility and superdestructibility are orthogonal — all four combinations are possible.

Canonical seeds and Prikry trees

[bibtex key=Hamkins97:Seeds]

Applying the seed concept to Prikry tree forcing Pμ, I investigate how well Pμ preserves the maximality property of ordinary Prikry forcing and prove that Pμ Prikry sequences are maximal exactly when μ admits no non-canonical seeds via a finite iteration.  In particular, I conclude that if μ is a strongly normal supercompactness measure, then Pμ Prikry sequences are maximal, thereby proving, for a large class of measures, a conjecture of W. H. Woodin’s.

Fragile measurability

[bibtex key=Hamkins94:FragileMeasurability]

Lifting and extending measures; fragile measurability

[bibtex key=Hamkins94:Dissertation]

A scan of the dissertation is available:  Lifting and extending measures; fragile measurability (15 Mb)

 

A class of strong diamond principles

[bibtex key=Hamkins:LaverDiamond]

In the context of large cardinals, the classical diamond principle κ is easily strengthened in natural ways. When κ is a measurable cardinal, for example, one might ask that a κ sequence anticipate every subset of κ not merely on a stationary set, but on a set of normal measure one. This is equivalent to the existence of a function :κVκ such that for any AH(κ+) there is an embedding j:VM having critical point κ with j()(κ)=A. This and similar principles formulated for many other large cardinal notions, including weakly compact, indescribable, unfoldable, Ramsey, strongly unfoldable and strongly compact cardinals, are best conceived as an expression of the Laver function concept from supercompact cardinals for these weaker large cardinal notions. The resulting Laver diamond principles can hold or fail in a variety of interesting ways.

The multiverse perspective on determinateness in set theory, Harvard, 2011

This talk, taking place October 19, 2011, is part of the year-long Exploring the Frontiers of Incompleteness (EFI) series at Harvard University, a workshop focused on the question of determinateness in set theory, a central question in the philosophy of set theory. JDH at Harvard Streaming video will be available on-line, and each talk will be associated with an on-line discussion forum, to which links will be made here later.

In this talk, I will discuss the multiverse perspective on determinateness in set theory.  The multiverse view in set theory is the view that there are many distinct concepts of set, each instantiated in a corresponding set-theoretic universe. The universe view, in contrast, asserts that there is an absolute background set concept, with a corresponding absolute set-theoretic universe in which every set-theoretic question has a definite answer.  The multiverse position, I argue, explains our experience with the enormous diversity of set-theoretic possibilities, a phenomenon that challenges the universe view.  In particular, I shall argue that the continuum hypothesis is settled on the multiverse view by our extensive knowledge about how it behaves in the multiverse, and as a result it can no longer be settled in the manner formerly hoped for.

Workshop materials | Article | Slides | EFI discussion forum | Video Stream

Generalizations of the Kunen Inconsistency, Singapore 2011

A talk at the Prospects of Infinity: Workshop on Set Theory  at the National University of Singapore, July 18-22, 2011.

I shall present several generalizations of the well-known Kunen inconsistency that there is no nontrivial elementary embedding from the set-theoretic universe V to itself, including generalizations-of-generalizations previously established by Woodin and others.  For example, there is no nontrivial elementary embedding from the universe V to a set-forcing extension V[G], or conversely from V[G] to V, or more generally from one ground model of the universe to another, or between any two models that are eventually stationary correct, or from V to HOD, or conversely from HOD to V, or from V to the gHOD, or conversely from gHOD to V; indeed, there can be no nontrivial elementary embedding from any definable class to V.  Other results concern generic embeddings, definable embeddings and results not requiring the axiom of choice.  I will aim for a unified presentation that weaves together previously known unpublished or folklore results along with some new contributions.  This is joint work with Greg Kirmayer and Norman Perlmutter.

SlidesArticle 

What is the theory of ZFC-Powerset? Toronto 2011

This was a talk at the Toronto Set Theory Seminar held April 22, 2011 at the Fields Institute in Toronto.

The theory ZFC-, consisting of the usual axioms of ZFC but with the powerset axiom removed, when axiomatized by extensionality, foundation, pairing, union, infinity, separation, replacement and the axiom of choice, is weaker than commonly supposed, and suffices to prove neither that a countable union of countable sets is countable, nor that ω1 is regular, nor that the Los theorem holds for ultrapowers, even for well-founded ultrapowers on a measurable cardinal, nor that the Gaifman theorem holds, that is, that every Σ1-elementary cofinal embedding j:MN between models of the theory is fully elementary, nor that Σn sets are closed under bounded quantification. Nevertheless, these deficits of ZFC- are completely repaired by strengthening it to the theory obtained by using the collection axiom rather than replacement in the axiomatization above. These results extend prior work of Zarach. This is joint work with Victoria Gitman and Thomas Johnstone.

Article | Victoria Gitman’s post

An introduction to Boolean ultrapowers, Bonn, 2011

A four-lecture tutorial on the topic of Boolean ultrapowers at the Young Set Theory Workshop at the Hausdorff Center for Mathematics in Königswinter near Bonn, Germany,  March 21-25, 2011.

Boolean ultrapowers generalize the classical ultrapower construction on a power-set algebra to the context of an ultrafilter on an arbitrary complete Boolean algebra. Closely related to forcing and particularly to the use of Boolean-valued models in forcing, Boolean ultrapowers were introduced by Vopenka in order to carry out forcing as an internal ZFC construction, rather than as a meta-theoretic argument as in Cohen’s approach. An emerging interest in Boolean ultrapowers has arisen from a focus on the well-founded Boolean ultrapowers as large cardinal embeddings.

Historically, researchers have come to the Boolean ultrapower concept from two directions, from set theory and from model theory. Exemplifying the set-theoretic perspective, Bell’s classic (1985) exposition emphasizes the Boolean-valued model VB and its quotients VB/U, rather than the Boolean ultrapower VU itself, which is not considered there. Mansfield (1970), in contrast, gives a purely algebraic, forcing-free account of the Boolean ultrapower, emphasizing its potential as a model-theoretic technique, while lacking the accompanying generic objects.

The unifying view I will explore in this tutorial is that the well-founded Boolean ultrapowers reveal the two central concerns of set-theoretic research–forcing and large cardinals–to be two aspects of a single underlying construction, the Boolean ultrapower, whose consequent close connections might be more fruitfully explored. I will provide a thorough introduction to the Boolean ultrapower construction, while assuming only an elementary graduate student-level familiarity with set theory and the classical ultrapower and forcing techniques.

ArticleAbstract | Lecture Notes