Same structure, different truths, Stanford University CSLI, May 2016

This will be a talk for the Workshop on Logic, Rationality, and Intelligent Interaction at the CSLI, Stanford University, May 27-28, 2016.

Abstract. To what extent does a structure determine its theory of truth? I shall discuss several surprising mathematical results illustrating senses in which it does not, for the satisfaction relation of first-order logic is less absolute than one might have expected. Two models of set theory, for example, can have exactly the same natural numbers and the same arithmetic structure $\langle\mathbb{N},+,\cdot,0,1,<\rangle$, yet disagree on what is true in this structure; they have the same arithmetic, but different theories of arithmetic truth; two models of set theory can have the same natural numbers and a computable linear order in common, yet disagree on whether it is a well-order; two models of set theory can have the same natural numbers and the same reals, yet disagree on projective truth; two models of set theory can have a rank initial segment of the universe $\langle V_\delta,{\in}\rangle$ in common, yet disagree about whether it is a model of ZFC. These theorems and others can be proved with elementary classical model-theoretic methods, which I shall explain. Indefinite arithmetic truthOn the basis of these observations, Ruizhi Yang (Fudan University, Shanghai) and I argue that the definiteness of the theory of truth for a structure, even in the case of arithmetic, cannot be seen as arising solely from the definiteness of the structure itself in which that truth resides, but rather is a higher-order ontological commitment.

Slides | Main article: Satisfaction is not absolute | CLSI 2016 | Abstract at CLSI

The absolute truth about non-absolute truth, JAF – Weak Arithmetics Days, New York, July 2015

This will be a talk for the Journées sur les Arithmétiques Faibles – Weak Arithmetics Days conference, held in New York at the CUNY Graduate Center, July 7 – 9, 2015.

Abstract. I will discuss several fun theorems and folklore results illustrating that the satisfaction relation of first-order logic is less absolute than one might have expected. Two models of set theory, for example, can have the same natural numbers $\langle\mathbb{N},+,\cdot,0,1,<\rangle$, yet disagree on their theories of arithmetic truth; two models of set theory can have the same natural numbers and a computable linear order in common, yet disagree on whether it is a well-order and hence disagree about $\omega_1^{CK}$; two models of set theory can have the same natural numbers and the same reals, yet disagree on projective truth; two models of set theory can have a rank initial segment of the universe $\langle V_\delta,{\in}\rangle$ in common, yet disagree about whether it is a model of ZFC. These theorems and others can be proved with elementary classical model-theoretic methods. Indefinite arithmetic truthOn the basis of these observations, Ruizhi Yang (Fudan University, Shanghai) and I have argued that the definiteness of the theory of truth for a structure, even in the case of arithmetic, cannot be seen as arising solely from the definiteness of the structure itself in which that truth resides, but rather is a higher-order ontological commitment.

Slides |  Main article: Satisfaction is not absolute

Does definiteness-of-truth follow from definiteness-of-objects? NY Philosophical Logic Group, NYU, November 2014

This will be a talk for the New York Philosophical Logic Group, November 10, 2014, 5-7pm, at the NYU Philosophy Department, 5 Washington Place, Room 302.

Indefinite arithmetic truth

Abstract. This talk — a mix of mathematics and philosophy — concerns the extent to which we may infer definiteness of truth in a mathematical context from definiteness of the underlying objects and structure of that context. The philosophical analysis is based in part on the mathematical observation that the satisfaction relation for model-theoretic truth is less absolute than often supposed.  Specifically, two models of set theory can have the same natural numbers and the same structure of arithmetic in common, yet disagree about whether a particular arithmetic sentence is true in that structure. In other words, two models can have the same arithmetic objects and the same formulas and sentences in the language of arithmetic, yet disagree on their corresponding theories of truth for those objects. Similarly, two models of set theory can have the same natural numbers, the same arithmetic structure, and the same arithmetic truth, yet disagree on their truths-about-truth, and so on at any desired level of the iterated truth-predicate hierarchy.  These mathematical observations, for which I shall strive to give a very gentle proof in the talk (using only elementary classical methods), suggest that a philosophical commitment to the determinate nature of the theory of truth for a structure cannot be seen as a consequence solely of the determinateness of the structure in which that truth resides. The determinate nature of arithmetic truth, for example, is not a consequence of the determinate nature of the arithmetic structure N = {0,1,2,…} itself, but rather seems to be an additional higher-order commitment requiring its own analysis and justification.

This work is based on my recent paper, Satisfaction is not absolute, joint with Ruizhi Yang (Fudan University, Shanghai).

Satisfaction is not absolute, Dartmouth Logic Seminar, January 2014

dartmouth_campusThis will be a talk for the Dartmouth Logic Seminar on January 23rd, 2014.

Abstract. I will discuss a number of theorems showing that the satisfaction relation of first-order logic is less absolute than might have been supposed. Two models of set theory can have the same natural numbers, for example, and the same standard model of arithmetic $\langle\mathbb{N},{+},{\cdot},0,1,{\lt}\rangle$, yet disagree on their theories of arithmetic truth; two models of set theory can have the same natural numbers and a computable linear order in common, yet disagree on whether it is a well-order; two models of set theory can have the same natural numbers and the same reals, yet disagree on projective truth; two models of set theory can have a rank initial segment of the universe $\langle V_\delta,{\in}\rangle$ in common, yet disagree about whether it is a model of ZFC. The theorems are proved with elementary classical model-theoretic methods, and many of them can be considered folklore results in the subject of models of arithmetic.

Indefinite arithmetic truthOn the basis of these mathematical results, Ruizhi Yang (Fudan University, Shanghai) and I have argued that the definiteness of truth in a structure, such as with arithmetic truth in the standard model of arithmetic, cannot arise solely from the definiteness of the structure itself in which that truth resides; rather, it must be seen as a separate, higher-order ontological commitment.

Main article: Satisfaction is not absolute

Satisfaction is not absolute

[bibtex key=HamkinsYang:SatisfactionIsNotAbsolute]$\newcommand\N{\mathbb{N}}\newcommand\satisfies{\models}$

Abstract. We prove that the satisfaction relation $\mathcal{N}\satisfies\varphi[\vec a]$ of first-order logic is not absolute between models of set theory having the structure $\mathcal{N}$ and the formulas $\varphi$ all in common. Two models of set theory can have the same natural numbers, for example, and the same standard model of arithmetic $\langle\N,{+},{\cdot},0,1,{\lt}\rangle$, yet disagree on their theories of arithmetic truth; two models of set theory can have the same natural numbers and the same arithmetic truths, yet disagree on their truths-about-truth, at any desired level of the iterated truth-predicate hierarchy; two models of set theory can have the same natural numbers and the same reals, yet disagree on projective truth; two models of set theory can have the same $\langle H_{\omega_2},{\in}\rangle$ or the same rank-initial segment $\langle V_\delta,{\in}\rangle$, yet disagree on which assertions are true in these structures.

On the basis of these mathematical results, we argue that a philosophical commitment to the determinateness of the theory of truth for a structure cannot be seen as a consequence solely of the determinateness of the structure in which that truth resides. The determinate nature of arithmetic truth, for example, is not a consequence of the determinate nature of the arithmetic structure $\N=\{ 0,1,2,\ldots\}$ itself, but rather, we argue, is an additional higher-order commitment requiring its own analysis and justification.

Many mathematicians and philosophers regard the natural numbers $0,1,2,\ldots\,$, along with their usual arithmetic structure, as having a privileged mathematical existence, a Platonic realm in which assertions have definite, absolute truth values, independently of our ability to prove or discover them. Although there are some arithmetic assertions that we can neither prove nor refute—such as the consistency of the background theory in which we undertake our proofs—the view is that nevertheless there is a fact of the matter about whether any such arithmetic statement is true or false in the intended interpretation. The definite nature of arithmetic truth is often seen as a consequence of the definiteness of the structure of arithmetic $\langle\N,{+},{\cdot},0,1,{\lt}\rangle$ itself, for if the natural numbers exist in a clear and distinct totality in a way that is unambiguous and absolute, then (on this view) the first-order theory of truth residing in that structure—arithmetic truth—is similarly clear and distinct.

Feferman provides an instance of this perspective when he writes (Feferman 2013, Comments for EFI Workshop, p. 6-7) :

In my view, the conception [of the bare structure of the natural numbers] is completely clear, and thence all arithmetical statements are definite.

It is Feferman’s `thence’ to which we call attention.  Martin makes a similar point (Martin, 2012, Completeness or incompleteness of basic mathematical concepts):

What I am suggesting is that the real reason for confidence in first-order completeness is our confidence in the full determinateness of the concept of the natural numbers.

Many mathematicians and philosophers seem to share this perspective. The truth of an arithmetic statement, to be sure, does seem to depend entirely on the structure $\langle\N,{+},{\cdot},0,1,{\lt}\rangle$, with all quantifiers restricted to $\N$ and using only those arithmetic operations and relations, and so if that structure has a definite nature, then it would seem that the truth of the statement should be similarly definite.

Nevertheless, in this article we should like to tease apart these two ontological commitments, arguing that the definiteness of truth for a given mathematical structure, such as the natural numbers, the reals or higher-order structures such as $H_{\omega_2}$ or $V_\delta$, does not follow from the definite nature of the underlying structure in which that truth resides. Rather, we argue that the commitment to a theory of truth for a structure is a higher-order ontological commitment, going strictly beyond the commitment to a definite nature for the underlying structure itself.

We make our argument in part by proving that different models of set theory can have a structure identically in common, even the natural numbers, yet disagree on the theory of truth for that structure.

Theorem.

  • Two models of set theory can have the same structure of arithmetic $$\langle\N,{+},{\cdot},0,1,{\lt}\rangle^{M_1}=\langle\N,{+},{\cdot},0,1,{\lt}\rangle^{M_2},$$yet disagree on the theory of arithmetic truth.
  • Two models of set theory can have the same natural numbers and a computable linear order in common, yet disagree about whether it is a well-order.
  • Two models of set theory that have the same natural numbers and the same reals, yet disagree on projective truth.
  • Two models of set theory can have a transitive rank initial segment in common $$\langle V_\delta,{\in}\rangle^{M_1}=\langle V_\delta,{\in}\rangle^{M_2},$$yet disagree about whether it is a model of ZFC.

The proofs use only elementary classical methods, and might be considered to be a part of the folklore of the subject of models of arithmetic. The paper includes many further examples of the phenomenon, and concludes with a philosophical discussion of the issue of definiteness, concerning the question of whether one may deduce definiteness-of-truth from definiteness-of-objects and definiteness-of-structure.

 

Satisfaction is not absolute, CUNY Logic Workshop, September 2013

This will be a talk for the CUNY Logic Workshop on September 27, 2013.

Abstract.  I will discuss a number of theorems showing that the satisfaction relation of first-order logic is less absolute than might have been supposed. Two models of set theory $M_1$ and $M_2$, for example, can agree on their natural numbers $\langle\mathbb{N},{+},{\cdot},0,1,{\lt}\rangle^{M_1}=\langle\mathbb{N},{+},{\cdot},0,1,{\lt}\rangle^{M_2}$, yet disagree on arithmetic truth: they have a sentence $\sigma$ in the language of arithmetic that $M_1$ thinks is true in the natural numbers, yet $M_2$ thinks $\neg\sigma$ there. Two models of set theory can agree on the natural numbers $\mathbb{N}$ and on the reals $\mathbb{R}$, yet disagree on projective truth. Two models of set theory can have the same natural numbers and have a computable linear order in common, yet disagree about whether this order is well-ordered. Two models of set theory can have a transitive rank initial segment $V_\delta$ in common, yet disagree about whether this $V_\delta$ is a model of ZFC. The theorems are proved with elementary classical methods.

This is joint work with Ruizhi Yang (Fudan University, Shanghai). We argue, on the basis of these mathematical results, that the definiteness of truth in a structure, such as with arithmetic truth in the standard model of arithmetic, cannot arise solely from the definiteness of the structure itself in which that truth resides; rather, it must be seen as a separate, higher-order ontological commitment.

Article

Satisfaction is not absolute, Connecticut, October 2013

This will be a talk for the Logic Seminar in the Mathematics Department at the University of Connecticut in Storrs on October 25, 2013.

Abstract. The satisfaction relation $\mathcal{N}\models\varphi[\vec a]$ of first-order logic, it turns out, is less absolute than might have been supposed.  Two models of set theory, for example, can agree on their natural numbers and on what they think is the standard model of arithmetic $\langle\mathbb{N},{+},{\cdot},0,1,{\lt}\rangle$, yet disagree on their theories of arithmetic truth, the first-order truths of this structure.  Two models of set theory can have the same natural numbers and the same reals, yet disagree on projective truth.  Two models of set theory can have the same natural numbers and a computable linear order in common, yet disagree about whether it is well-ordered.  Two models of set theory can have a transitive rank initial segment $V_\delta$ in common, yet disagree about whether it is a model of ZFC.  The arguments rely mainly on elementary classical methods.

This is joint work with Ruizhi Yang (Fudan University, Shanghai), and our manuscript will be available soon, in which we prove these and several other very general facts showing that satisfaction is not absolute.  On the basis of these mathematical results, we mount a philosophical argument that a commitment to the determinateness of truth in a structure, such as the case of arithmetic truth in the standard model of arithmetic, cannot result solely from the determinateness of the structure itself in which that truth resides; rather, it must be seen as a separate, higher-order ontological commitment.

University of Connecticut Logic Seminar | Article