Resurrection axioms and uplifting cardinals

  • J. D. Hamkins and T. Johnstone, “Resurrection axioms and uplifting cardinals,” Archive for Mathematical Logic, vol. 53, iss. 3-4, p. p.~463–485, 2014.  
    @ARTICLE{HamkinsJohnstone2014:ResurrectionAxiomsAndUpliftingCardinals,
    AUTHOR = "Joel David Hamkins and Thomas Johnstone",
    TITLE = "Resurrection axioms and uplifting cardinals",
    JOURNAL = "Archive for Mathematical Logic",
    publisher= {Springer Berlin Heidelberg},
    YEAR = "2014",
    volume = "53",
    number = "3-4",
    pages = "p.~463--485",
    month = "",
    note = "",
    url = "http://jdh.hamkins.org/resurrection-axioms-and-uplifting-cardinals",
    eprint = "1307.3602",
    archivePrefix = {arXiv},
    primaryClass = {math.LO},
    doi= "10.1007/s00153-014-0374-y",
    issn= {0933-5846},
    abstract = "",
    keywords = "",
    source = "",
    file = F }

Abstract. We introduce the resurrection axioms, a new class of forcing axioms, and the uplifting cardinals, a new large cardinal notion, and prove that various instances of the resurrection axioms are equiconsistent over ZFC with the existence of uplifting cardinal.

Many classical forcing axioms can be viewed, at least informally, as the claim that the universe is existentially closed in its forcing extensions, for the axioms generally assert that certain kinds of filters, which could exist in a forcing extension $V[G]$, exist already in $V$. In several instances this informal perspective is realized more formally: Martin’s axiom is equivalent to the assertion that $H_{\frak{c}}$ is existentially closed in all c.c.c. forcing extensions of the universe, meaning that $H_{\frak{c}}\prec_{\Sigma_1}V[G]$ for all such extensions; the bounded proper forcing axiom is equivalent to the assertion that $H_{\omega_2}$ is existentially closed in all proper forcing extensions, or $H_{\omega_2}\prec_{\Sigma_1}V[G]$; and there are other similar instances.

In model theory, a submodel $M\subset N$ is existentially closed in $N$ if existential assertions true in $N$ about parameters in $M$ are true already in $M$, that is, if $M$ is a $\Sigma_1$-elementary substructure of $N$, which we write as $M\prec_{\Sigma_1} N$. Furthermore, in a general model-theoretic setting, existential closure is tightly connected with resurrection, the theme of this article.

Elementary Fact. If $\mathcal{M}$ is a submodel of $\mathcal{N}$, then the following are equivalent.

  1. The model $\mathcal{M}$ is existentially closed in $\mathcal{N}$.
  2. $\mathcal{M}\subset \mathcal{N}$ has resurrection. That is, there is a further extension $\mathcal{M}\subset\mathcal{N}\subset\mathcal{M}^+$ for which $\mathcal{M}\prec\mathcal{M}^+$.

We call this resurrection because although certain truths in $\mathcal{M}$ may no longer hold in the extension $\mathcal{N}$, these truths are nevertheless revived in light of $\mathcal{M}\prec\mathcal{M}^+$ in the further extension to $\mathcal{M}^+$.

In the context of forcing axioms, we are more interested in the case of forcing extensions than in the kind of arbitrary extension $\mathcal{M}^+$ arising in the fact, and in this context the equivalence of (1) and (2) breaks own, although the converse implication $(2)\to(1)$ always holds, and every instance of resurrection implies the corresponding instance of existential closure. This key observation leads us to the main unifying theme of this article, the idea that

resurrection may allow us to formulate more robust forcing axioms 

than existential closure or than combinatorial assertions about filters and dense sets. We therefore introduce in this paper a spectrum of new forcing axioms utilizing the resurrection concept.

Main Definition. Let $\Gamma$ be a fixed definable class of forcing notions.

  1. The resurrection axiom $\text{RA}(\Gamma)$ is the assertion that for every forcing notion $\mathbb{Q}\in\Gamma$ there is further forcing $\mathbb{R}$, with $\vdash_{\mathbb{Q}}\mathbb{R}\in\Gamma$, such that if $g\ast h\subset\mathbb{Q}\ast\mathbb{R}$ is $V$-generic, then $H_{\frak{c}}\prec H_{\frak{c}}^{V[g\ast h]}$.
  2. The weak resurrection axiom $\text{wRA}(\Gamma)$ is the assertion that for every $\mathbb{Q}\in\Gamma$ there is further forcing $\mathbb{R}$, such that if $g\ast h\subset\mathbb{Q}\ast\mathbb{R}$ is $V$-generic, then $H_{\frak{c}}\prec H_{\frak{c}}^{V[g\ast h]}$.

The main result is to prove that various formulations of the resurrection axioms are equiconsistent with the existence of an uplifting cardinal, where an inaccessible cardinal $\kappa$ is uplifting, if there are arbitrarily large inaccessible cardinals $\gamma$ for which $H_\kappa\prec H_\gamma$.  This is a rather weak large cardinal notion, having consistency strength strictly less than the existence of a Mahlo cardinal, which is traditionally considered to be very low in the large cardinal hierarchy.  One highlight of the article is our development of “the world’s smallest Laver function,” the Laver function concept for uplifting cardinals, and we perform an analogue of the Laver preparation in order to achieve the resurrection axiom for c.c.c. forcing.

Main Theorem. The following theories are equiconsistent over ZFC:

  1. There is an uplifting cardinal.
  2. $\text{RA}(\text{all})$.
  3. $\text{RA}(\text{ccc})$.
  4. $\text{RA}(\text{semiproper})+\neg\text{CH}$.
  5. $\text{RA}(\text{proper})+\neg\text{CH}$.
  6. For some countable ordinal $\alpha$, the axiom $\text{RA}(\alpha\text{-proper})+\neg\text{CH}$.
  7. $\text{RA}(\text{axiom-A})+\neg\text{CH}$.
  8. $\text{wRA}(\text{semiproper})+\neg\text{CH}$.
  9. $\text{wRA}(\text{proper})+\neg\text{CH}$.
  10. For some countable ordinal $\alpha$, the axiom $\text{wRA}(\alpha\text{-proper})+\neg\text{CH}$.
  11. $\text{wRA}(\text{axiom-A})+\neg\text{CH}$.
  12. $\text{wRA}(\text{countably closed})+\neg\text{CH}$.

The proof outline proceeds in two directions: on the one hand, the resurrection axioms generally imply that the continuum $\frak{c}$ is uplifting in $L$; and conversely, given any uplifting cardinal $\kappa$, we may perform a suitable lottery iteration of $\Gamma$ forcing to obtain the resurrection axiom for $\Gamma$ in a forcing extension with $\kappa=\frak{c}$.

In a follow-up article, currently nearing completion, we treat the boldface resurrection axioms, which allow a predicate $A\subset\frak{c}$ and ask for extensions of the form $\langle H_{\frak{c}},{\in},A\rangle\prec\langle H_{\frak{c}}^{V[g\ast h]},{\in},A^\ast\rangle$, for some $A^\ast\subset\frak{c}^{V[g\ast h]}$ in the extension.  In that article, we prove the equiconsistency of various formulations of boldface resurrection with the existence of a strongly uplifting cardinal, which we prove is the same as a superstrongly unfoldable cardinal.

Superstrong and other large cardinals are never Laver indestructible

  • J. Bagaria, J. D. Hamkins, K. Tsaprounis, and T. Usuba, “Superstrong and other large cardinals are never Laver indestructible,” to appear in Archive for Mathematical Logic (special issue in honor of Richard Laver).  
    @ARTICLE{BagariaHamkinsTsaprounisUsuba:SuperstrongAndOtherLargeCardinalsAreNeverLaverIndestructible,
    author = {Joan Bagaria and Joel David Hamkins and Konstantinos Tsaprounis and Toshimichi Usuba},
    title = {Superstrong and other large cardinals are never {Laver} indestructible},
    journal = {to appear in Archive for Mathematical Logic (special issue in honor of Richard Laver)},
    year = {},
    volume = {},
    number = {},
    pages = {},
    month = {},
    note = {},
    abstract = {},
    keywords = {},
    eprint = {1307.3486},
    archivePrefix = {arXiv},
    primaryClass = {math.LO},
    url = {http://jdh.hamkins.org/superstrong-never-indestructible/},
    comment = {http://jdh.hamkins.org/superstrong-never-indestructible/},
    source = {},
    }

Abstract.  Superstrong cardinals are never Laver indestructible. Similarly, almost huge cardinals, huge cardinals, superhuge cardinals, rank-into-rank cardinals, extendible cardinals, $1$-extendible cardinals, $0$-extendible cardinals, weakly superstrong cardinals, uplifting cardinals, pseudo-uplifting cardinals, superstrongly unfoldable cardinals, $\Sigma_n$-reflecting cardinals, $\Sigma_n$-correct cardinals and $\Sigma_n$-extendible cardinals (all for $n\geq 3$) are never Laver indestructible. In fact, all these large cardinal properties are superdestructible: if $\kappa$ exhibits any of them, with corresponding target $\theta$, then in any forcing extension arising from nontrivial strategically ${\lt}\kappa$-closed forcing $\mathbb{Q}\in V_\theta$, the cardinal $\kappa$ will exhibit none of the large cardinal properties with target $\theta$ or larger.

The large cardinal indestructibility phenomenon, occurring when certain preparatory forcing makes a given large cardinal become necessarily preserved by any subsequent forcing from a large class of forcing notions, is pervasive in the large cardinal hierarchy. The phenomenon arose in Laver’s seminal result that any supercompact cardinal $\kappa$ can be made indestructible by ${\lt}\kappa$-directed closed forcing. It continued with the Gitik-Shelah treatment of strong cardinals; the universal indestructibility of Apter and myself, which produced simultaneous indestructibility for all weakly compact, measurable, strongly compact, supercompact cardinals and others; the lottery preparation, which applies generally to diverse large cardinals; work of Apter, Gitik and Sargsyan on indestructibility and the large-cardinal identity crises; the indestructibility of strongly unfoldable cardinals; the indestructibility of Vopenka’s principle; and diverse other treatments of large cardinal indestructibility. Based on these results, one might be tempted to the general conclusion that all the usual large cardinals can be made indestructible.

In this article, my co-authors and I temper that temptation by proving that certain kinds of large cardinals cannot be made nontrivially indestructible. Superstrong cardinals, we prove, are never Laver indestructible. Consequently, neither are almost huge cardinals, huge cardinals, superhuge cardinals, rank-into-rank cardinals, extendible cardinals and $1$-extendible cardinals, to name a few. Even the $0$-extendible cardinals are never indestructible, and neither are weakly superstrong cardinals, uplifting cardinals, pseudo-uplifting cardinals, strongly uplifting cardinals, superstrongly unfoldable cardinals, $\Sigma_n$-reflecting cardinals, $\Sigma_n$-correct cardinals and $\Sigma_n$-extendible cardinals, when $n\geq 3$. In fact, all these large cardinal properties are superdestructible, in the sense that if $\kappa$ exhibits any of them, with corresponding target $\theta$, then in any forcing extension arising from nontrivial strategically ${\lt}\kappa$-closed forcing $\mathbb{Q}\in V_\theta$, the cardinal $\kappa$ will exhibit none of the large cardinal properties with target $\theta$ or larger. Many quite ordinary forcing notions, which one might otherwise have expected to fall under the scope of an indestructibility result, will definitely ruin all these large cardinal properties. For example, adding a Cohen subset to any cardinal $\kappa$ will definitely prevent it from being superstrong—as well as preventing it from being uplifting, $\Sigma_3$-correct, $\Sigma_3$-extendible and so on with all the large cardinal properties mentioned above—in the forcing extension.

Main Theorem. 

  1. Superstrong cardinals are never Laver indestructible.
  2. Consequently, almost huge, huge, superhuge and rank-into-rank cardinals are never Laver indestructible.
  3. Similarly, extendible cardinals, $1$-extendible and even $0$-extendible cardinals are never Laver indestructible.
  4. Uplifting cardinals, pseudo-uplifting cardinals, weakly superstrong cardinals, superstrongly unfoldable cardinals and strongly uplifting cardinals are never Laver indestructible.
  5. $\Sigma_n$-reflecting and indeed $\Sigma_n$-correct cardinals, for each finite $n\geq 3$, are never Laver indestructible.
  6. Indeed—the strongest result here, because it is the weakest notion—$\Sigma_3$-extendible cardinals are never Laver indestructible.

In fact, each of these large cardinal properties is superdestructible. Namely, if $\kappa$ exhibits any of them, with corresponding target $\theta$, then in any forcing extension arising from nontrivial strategically ${\lt}\kappa$-closed forcing $\mathbb{Q}\in V_\theta$, the cardinal $\kappa$ will exhibit none of the mentioned large cardinal properties with target $\theta$ or larger.

The proof makes use of a detailed analysis of the complexity of the definition of the ground model in the forcing extension.  These results are, to my knowledge, the first applications of the ideas of set-theoretic geology not making direct references to set-theoretically geological concerns.

Theorem 10 in the article answers (the main case of) a question I had posed on MathOverflow, namely, Can a model of set theory be realized as a Cohen-subset forcing extension in two different ways, with different grounds and different cardinals?  I had been specifically interested there to know whether a cardinal $\kappa$ necessarily becomes definable after adding a Cohen subset to it, and theorem 10 shows indeed that it does:  after adding a Cohen subset to a cardinal, it becomes $\Sigma_3$-definable in the extension, and this fact can be seen as explaining the main theorem above.

Related MO question | CUNY talk

The least weakly compact cardinal can be unfoldable, weakly measurable and nearly $\theta$-supercompact

  • B. Cody, M. Gitik, J. D. Hamkins, and J. A. Schanker, “The least weakly compact cardinal can be unfoldable, weakly measurable and nearly $\theta$-supercompact,” Archive for Mathematical Logic, pp. 1-20, 2015.  
    @article{CodyGitikHamkinsSchanker2015:LeastWeaklyCompact, year= {2015}, issn=
    {0933-5846}, journal= {Archive for Mathematical Logic}, doi=
    {10.1007/s00153-015-0423-1}, title= {The least weakly compact cardinal can be
    unfoldable, weakly measurable and nearly {$\theta$}-supercompact}, publisher=
    {Springer Berlin Heidelberg}, keywords= {Weakly compact; Unfoldable; Weakly
    measurable; Nearly supercompact; Identity crisis; Primary 03E55; 03E35},
    author= {Cody, Brent and Gitik, Moti and Hamkins, Joel David and Schanker,
    Jason A.}, pages= {1--20}, language= {English}, eprint = {1305.5961},
    archivePrefix = {arXiv},
    primaryClass = {math.LO},
    url= {http://jdh.hamkins.org/least-weakly-compact}, }

Abstract.   We prove from suitable large cardinal hypotheses that the least weakly compact cardinal can be unfoldable, weakly measurable and even nearly $\theta$-supercompact, for any desired $\theta$. In addition, we prove several global results showing how the entire class of weakly compact cardinals, a proper class, can be made to coincide with the class of unfoldable cardinals, with the class of weakly measurable cardinals or with the class of nearly $\theta_\kappa$-supercompact cardinals $\kappa$, for nearly any desired function $\kappa\mapsto\theta_\kappa$. These results answer several questions that had been open in the literature and extend to these large cardinals the identity-crises phenomenon, first identified by Magidor with the strongly compact cardinals.

In this article, we prove that the least weakly compact cardinal can exhibit any of several much stronger large cardinal properties. Namely, the least weakly compact cardinal can be unfoldable, weakly measurable and nearly $\theta$-supercompact for any desired $\theta$.

Main Theorem.  Assuming a suitable large cardinal hypothesis, the least weakly compact cardinal can be unfoldable, weakly measurable and even nearly $\theta$-supercompact, for any desired $\theta$.

Meanwhile, the least weakly compact cardinal can never exhibit these extra large cardinal properties in $L$, and indeed, the existence of a weakly measurable cardinal in the constructible universe is impossible. Furthermore, in each case the extra properties are strictly stronger than weak compactness in consistency strength.

We show in addition a more global result, that the entire class of weakly compact cardinals can be made to coincide with the class of unfoldable cardinals, with the class of weakly measurable cardinals, and with the class of nearly $\theta_\kappa$-supercompact cardinals $\kappa$, with enormous flexibility in the map $\kappa\mapsto\theta_\kappa$.

Our results therefore extend the `identity-crises’ phenomenon—first identified (and named) by Magidor—which occurs when a given large cardinal property can be made in various models to coincide either with much stronger or with much weaker large cardinal notions. Magidor had proved that the least strongly compact cardinal can be the least supercompact cardinal in one model of set theory and the least measurable cardinal in another. Here, we extend the phenomenon to weak measurability, partial near supercompactness and unfoldability. Specifically, the least weakly measurable cardinal coincides with the least measurable cardinal under the GCH, but it is the least weakly compact cardinal in our main theorem. Similarly, the least cardinal $\kappa$ that is nearly $\kappa^{+}$-supercompact is measurable with nontrivial Mitchell order under the GCH, but it is the least weakly compact cardinal here (and similar remarks apply to near $\kappa^{++}$-supercompactness and so on). The least unfoldable cardinal is strongly unfoldable in $L$, and therefore a $\Sigma_2$-reflecting limit of weakly compact cardinals there, but it is the least weakly compact cardinal in our main theorem. The global results of section 6 show just how malleable these notions are.

Norman Lewis Perlmutter

Norman Lewis Perlmutter successfully defended his dissertation under my supervision and will earn his Ph.D. at the CUNY Graduate Center in May, 2013.  His dissertation consists of two parts.  The first chapter arose from the observation that while direct limits of large cardinal embeddings and other embeddings between models of set theory are pervasive in the subject, there is comparatively little study of inverse limits of systems of such embeddings.  After such an inverse system had arisen in Norman’s joint work on Generalizations of the Kunen inconsistency, he mounted a thorough investigation of the fundamental theory of these inverse limits. In chapter two, he investigated the large cardinal hierarchy in the vicinity of the high-jump cardinals.  During this investigation, he ended up refuting the existence of what are now called the excessively hypercompact cardinals, which had appeared in several published articles.  Previous applications of that notion can be made with a weaker notion, what is now called a hypercompact cardinal.

Norman Lewis Perlmutter

web page | math genealogy | MathSciNet | ar$\chi$iv | related posts

Norman Lewis Perlmutter, “Inverse limits of models of set theory and the large cardinal hierarchy near a high-jump cardinal”  Ph.D. dissertation for The Graduate Center of the City University of New York, May, 2013.

Abstract.  This dissertation consists of two chapters, each of which investigates a topic in set theory, more specifically in the research area of forcing and large cardinals. The two chapters are independent of each other.

The first chapter analyzes the existence, structure, and preservation by forcing of inverse limits of inverse-directed systems in the category of elementary embeddings and models of set theory. Although direct limits of directed systems in this category are pervasive in the set-theoretic literature, the inverse limits in this same category have seen less study. I have made progress towards fully characterizing the existence and structure of these inverse limits. Some of the most important results are as follows. If the inverse limit exists, then it is given by either the entire thread class or a rank-initial segment of the thread class. Given sufficient large cardinal hypotheses, there are systems with no inverse limit, systems with inverse limit given by the entire thread class, and systems with inverse limit given by a proper subset of the thread class. Inverse limits are preserved in both directions by forcing under fairly general assumptions. Prikry forcing and iterated Prikry forcing are important techniques for constructing some of the examples in this chapter.

The second chapter analyzes the hierarchy of the large cardinals between a supercompact cardinal and an almost-huge cardinal, including in particular high-jump cardinals. I organize the large cardinals in this region by consistency strength and implicational strength. I also prove some results relating high-jump cardinals to forcing.  A high-jump cardinal is the critical point of an elementary embedding $j: V \to M$ such that $M$ is closed under sequences of length $\sup\{\ j(f)(\kappa) \mid f: \kappa \to \kappa\ \}$.  Two of the most important results in the chapter are as follows. A Vopenka cardinal is equivalent to an Woodin-for-supercompactness cardinal. The existence of an excessively hypercompact cardinal is inconsistent.

Superstrong cardinals are never Laver indestructible, and neither are extendible, almost huge and rank-into-rank cardinals, CUNY, January 2013

This is a talk for the CUNY Set Theory Seminar on February 1, 2013, 10:00 am.

Abstract.  Although the large cardinal indestructibility phenomenon, initiated with Laver’s seminal 1978 result that any supercompact cardinal $\kappa$ can be made indestructible by $\lt\kappa$-directed closed forcing and continued with the Gitik-Shelah treatment of strong cardinals, is by now nearly pervasive in set theory, nevertheless I shall show that no superstrong strong cardinal—and hence also no $1$-extendible cardinal, no almost huge cardinal and no rank-into-rank cardinal—can be made indestructible, even by comparatively mild forcing: all such cardinals $\kappa$ are destroyed by $\text{Add}(\kappa,1)$, by $\text{Add}(\kappa,\kappa^+)$, by $\text{Add}(\kappa^+,1)$ and by many other commonly considered forcing notions.

This is very recent joint work with Konstantinos Tsaprounis and Joan Bagaria.

nylogic.org | Set Theory Seminar |

A multiverse perspective on the axiom of constructiblity

  • J. D. Hamkins, “A multiverse perspective on the axiom of constructibility,” in Infinity and truth, World Sci. Publ., Hackensack, NJ, 2014, vol. 25, pp. 25-45.  
    @incollection {Hamkins2014:MultiverseOnVeqL,
    AUTHOR = {Hamkins, Joel David},
    TITLE = {A multiverse perspective on the axiom of constructibility},
    BOOKTITLE = {Infinity and truth},
    SERIES = {Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap.},
    VOLUME = {25},
    PAGES = {25--45},
    PUBLISHER = {World Sci. Publ., Hackensack, NJ},
    YEAR = {2014},
    MRCLASS = {03E45 (03A05)},
    MRNUMBER = {3205072},
    DOI = {10.1142/9789814571043_0002},
    url = {http://jdh.hamkins.org/multiverse-perspective-on-constructibility/},
    eprint = {1210.6541},
    archivePrefix = {arXiv},
    primaryClass = {math.LO},
    }

This article expands on an argument that I made during my talk at the Asian Initiative for Infinity: Workshop on Infinity and Truth, held July 25–29, 2011 at the Institute for Mathematical Sciences, National University of Singapore, and will be included in a proceedings volume that is being prepared for that conference.

Abstract. I argue that the commonly held $V\neq L$ via maximize position, which rejects the axiom of constructibility $V=L$ on the basis that it is restrictive, implicitly takes a stand in the pluralist debate in the philosophy of set theory by presuming an absolute background concept of ordinal. The argument appears to lose its force, in contrast, on an upwardly extensible concept of set, in light of the various facts showing that models of set theory generally have extensions to models of $V=L$ inside larger set-theoretic universes.

In section two, I provide a few new criticisms of Maddy’s proposed concept of `restrictive’ theories, pointing out that her concept of fairly interpreted in is not a transitive relation: there is a first theory that is fairly interpreted in a second, which is fairly interpreted in a third, but the first is not fairly interpreted in the third.  The same example (and one can easily construct many similar natural examples) shows that neither the maximizes over relation, nor the properly maximizes over relation, nor the strongly maximizes over relation is transitive.  In addition, the theory ZFC + `there are unboundedly many inaccessible cardinals’ comes out as formally restrictive, since it is strongly maximized by the theory ZF + `there is a measurable cardinal, with no worldly cardinals above it’.

To support the main philosophical thesis of the article, I survey a series of mathemtical results,  which reveal various senses in which the axiom of constructibility $V=L$ is compatible with strength in set theory, particularly if one has in mind the possibility of moving from one universe of set theory to a much larger one.  Among them are the following, which I prove or sketch in the article:

Observation. The constructible universe $L$ and $V$ agree on the consistency of any constructible theory. They have models of the same constructible theories.

Theorem. The constructible universe $L$ and $V$ have transitive models of exactly the same constructible theories in the language of set theory.

Corollary. (Levy-Shoenfield absoluteness theorem)  In particular, $L$ and $V$ satisfy the same $\Sigma_1$ sentences, with parameters hereditarily countable in $L$. Indeed, $L_{\omega_1^L}$ and $V$ satisfy the same such sentences.

Theorem. Every countable transitive set is a countable transitive set in the well-founded part of an $\omega$-model of V=L.

Theorem. If there are arbitrarily large $\lambda<\omega_1^L$ with $L_\lambda\models\text{ZFC}$, then every countable transitive set $M$ is a countable transitive set inside a structure $M^+$  that is a pointwise-definable model of ZFC + V=L, and $M^+$ is well founded as high in the countable ordinals as desired.

Theorem. (Barwise)  Every countable model of  ZF has an end-extension to a model of ZFC + V=L.

Theorem. (Hamkins, see here)  Every countable model of set theory $\langle M,{\in^M}\rangle$, including every transitive model, is isomorphic to a submodel of its own constructible universe $\langle L^M,{\in^M}\rangle$. In other words,  there is an embedding $j:M\to L^M$, which is elementary for quantifier-free assertions.

Another way to say this is that every countable model of set theory is a submodel of a model isomorphic to $L^M$. If we lived inside $M$, then by adding new sets and elements, our universe could be transformed into a copy of the constructible universe $L^M$.

(Plus, the article contains some nice diagrams.)

Related Singapore links:

The least weakly compact cardinal can be unfoldable, weakly measurable and nearly $\theta$-supercompact, New York, September 14, 2012

This will be a talk for the CUNY Set Theory seminar on September 14, 2012.

Abstract.  Starting from suitable large cardinal hypothesis, I will explain how to force the least weakly compact cardinal to be unfoldable, weakly measurable and, indeed, nearly $\theta$-supercompact.  These results, proved in joint work with Jason Schanker, Moti Gitik and Brent Cody, exhibit an identity-crises phenomenon for weak compactness, similar to the phenomenon identified by Magidor for the case of strongly compact cardinals.

 

Moving up and down in the generic multiverse

  • J. D. Hamkins and B. Löwe, “Moving up and down in the generic multiverse,” Logic and its Applications, ICLA 2013 LNCS, vol. 7750, pp. 139-147, 2013.  
    @ARTICLE{HamkinsLoewe2013:MovingUpAndDownInTheGenericMultiverse,
    AUTHOR = {Joel David Hamkins and Benedikt L\"owe},
    title = {Moving up and down in the generic multiverse},
    journal = {Logic and its Applications, ICLA 2013 LNCS},
    publisher= {Springer Berlin Heidelberg},
    editor= {Lodaya, Kamal},
    isbn= {978-3-642-36038-1},
    year = {2013},
    volume = {7750},
    number = {},
    pages = {139--147},
    doi= {10.1007/978-3-642-36039-8_13},
    month = {},
    note = {},
    url = {http://jdh.hamkins.org/up-and-down-in-the-generic-multiverse},
    url = {http://arxiv.org/abs/1208.5061},
    eprint = {1208.5061},
    archivePrefix = {arXiv},
    primaryClass = {math.LO},
    abstract = {},
    keywords = {},
    source = {},
    }

In this extended abstract we investigate the modal logic of the generic multiverse, which is a bimodal logic with operators corresponding to the relations “is a forcing extension of”‘ and “is a ground model of”. The fragment of the first relation is the modal logic of forcing and was studied by us in earlier work. The fragment of the second relation is the modal logic of grounds and will be studied here for the first time. In addition, we discuss which combinations of modal logics are possible for the two fragments.

The main theorems are as follows:

Theorem.  If  ZFC is consistent, then there is a model of  ZFC  whose modal logic of forcing and modal logic of grounds are both S4.2.

Theorem.  If  the theory “$L_\delta\prec L+\delta$ is inaccessible” is consistent, then there is a model of set theory whose modal logic of forcing is S4.2 and whose modal logic of grounds is S5.

Theorem.  If  the theory “$L_\delta\prec L+\delta$ is inaccessible” is consistent, then there is a model of set theory whose modal logic of forcing is S5 and whose modal logic of grounds is S4.2.

Theorem. There is no model of set theory such that both its modal logic of forcing and its modal logic of grounds are S5.

The current article is a brief extended abstract (10 pages).  A fuller account with more detailed proofs and further information will be provided in a subsequent articl

eprints:  ar$\chi$iv | NI12059-SAS | Hamburg #450

Brent Cody

Brent Cody earned his Ph.D. under my supervision at the CUNY Graduate Center in June, 2012.  Brent’s dissertation work began with the question of finding the exact consistency strength of the GCH failing at a cardinal $\theta$, when $\kappa$ is $\theta$-supercompact.  The answer turned out to be a $\theta$-supercompact cardinal that was also $\theta^{++}$-tall.  After this, he quickly dispatched more general instances of what he termed the Levinski property for a variety of other large cardinals, advancing his work towards a general investigation of the Easton theorem phenomenon in the large cardinal context, which he is now undertaking.  Brent held a post-doctoral position at the Fields Institute in Toronto, afterwards taking up a position at the University of Prince Edward Island.  He is now at Virginia Commonwealth University.

Brent Cody

web page | math genealogy | MathSciNet | ar$\chi$iv | related posts

Brent Cody, “Some Results on Large Cardinals and the Continuum Function,” Ph.D. dissertation for The Graduate Center of the City University of New York, June, 2012.

Abstract.  Given a Woodin cardinal $\delta$, I show that if $F$ is any Easton function with $F”\delta\subseteq\delta$ and GCH holds, then there is a cofinality preserving forcing extension in which $2^\gamma= F(\gamma)$ for each regular cardinal $\gamma<\delta$, and in which $\delta$ remains Woodin.

I also present a new example in which forcing a certain behavior of the continuum function on the regular cardinals, while preserving a given large cardinal, requires large cardinal strength beyond that of the original large cardinal under consideration. Specifically, I prove that the existence of a $\lambda$-supercompact cardinal $\kappa$ such that GCH fails at $\lambda$ is equiconsistent with the existence of a cardinal $\kappa$ that is $\lambda$-supercompact and $\lambda^{++}$-tall.

I generalize a theorem on measurable cardinals due to Levinski, which says that given a measurable cardinal, there is a forcing extension preserving the measurability of $\kappa$ in which $\kappa$ is the least regular cardinal at which GCH holds. Indeed, I show that Levinski’s result can be extended to many other large cardinal contexts. This work paves the way for many additional results, analogous to the results stated above for Woodin cardinals and partially supercompact cardinals.

Jason Schanker

Jason Aaron Schanker earned his Ph.D. under my supervision at the CUNY Graduate Center in June, 2011.  Jason’s dissertation introduces several interesting new large cardinal notions, investigating their interaction with forcing, indestructibility, the Generalized Continuum Hypothesis and other topics.  He defines that a cardinal $\kappa$ is weakly measurable, for example, if any family of $\kappa^+$ many subsets of $\kappa$ can be measured by a $\kappa$-complete filter.  This is equivalent to measurability under the GCH, of course, but the notions are not equivalent in general, although they are equiconsistent.  The weak measurability concept can be viewed as a generalization of weak compactness, and there are myriad equivalent formulations, including elementary embedding characterizations using transitive domains of size $\kappa^+$.  It was known classically that the failure of the GCH at a measurable cardinal has consistency strength strictly greater than a measurable cardinal, but Jason proved that the corresponding fact is not true for the weakly measurable cardinals.  Generalizing this notion, Jason introduced the near supercompactness hierarchy, which refines and extends the usual supercompactness hierarchy in a way that adapts well to many existing forcing arguments.  Jason holds a faculty position at Manhattanville College in Purchase, New York.

Jason Schanker

web page | math genealogy | MathSciNet | google scholar | I-phone apps | related posts

Jason Schanker, “Weakly Measurable Cardinals and Partial Near Supercompactness,”  Ph.D. dissertation for the Graduate Center of the City University of New York, June, 2011.

Abstract.  I will introduce a few new large cardinal concepts. A weakly measurable cardinal is a new large cardinal concept obtained by weakening the familiar concept of a measurable cardinal. Specifically, a cardinal $\kappa$ is weakly measurable if for every collection $A$ containing at most $\kappa^+$ many subsets of $\kappa$, there exists a nonprincipal $\kappa$-complete filter on $\kappa$ measuring all sets in $A$. Every measurable cardinal is weakly measurable, but a weakly measurable cardinal need not be measurable. Moreover, while the GCH cannot fail first at a measurable cardinal, I will show that it can fail first at a weakly measurable cardinal. More generally, if $\kappa$ is measurable, then we can make its weak measurability indestructible by the forcing $\text{Add}(\kappa,\eta)$ for all $\eta$ while forcing the GCH to hold below $\kappa$. Nevertheless, I shall prove that weakly measurable v cardinals and measurable cardinals are equiconsistent.

A cardinal κ is nearly $\theta$-supercompact if for every $A\subset\theta$, there exists a transitive $M\models\text{ZFC}^-$ closed under ${<}\kappa$ sequences with $A,\kappa,\theta\in M$, a transitive $N$, and an elementary embedding $j : M \to  N$ with critical point $\kappa$ such that $j(\kappa) > \theta$ and $j”\theta\in N$. This concept strictly refines the $\theta$-supercompactness hierarchy as every $\theta$-supercompact cardinal is nearly $\theta$-supercompact, and every nearly $2^{\theta^{{<}\kappa}}$-supercompact cardinal $\kappa$ is $\theta$-supercompact. Moreover, if $\kappa$ is a $\theta$-supercompact cardinal for some $\theta$ such that $\theta^{{<}\kappa}=\theta$, we can move to a forcing extension preserving all cardinals below $\theta^{++}$ where $\kappa$ remains $\theta$-supercompact but is not nearly $\theta^+$-supercompact. I will also show that if $\kappa$ is nearly $\theta$-supercompact for some $\theta\geq 2^\kappa$ such that $\theta^{{<}\theta}=\theta$, then there exists a forcing extension preserving all cardinals at or above $\kappa$ where $\kappa$ is nearly $\theta$-supercompact but not measurable. These types of large cardinals also come equipped with a nontrivial indestructibility result, and I will prove that if $\kappa$ is nearly $\theta$-supercompact for some $\theta\geq\kappa$ such that $\theta^{{<}\theta}=\theta$, then there is a forcing extension where its near $\theta$-supercompactness is preserved and indestructible by any further ${<}\kappa$-directed closed $\theta$-c.c. forcing of size at most $\theta$. Finally, these cardinals have high consistency strength. Specifically, I will show that if $\kappa$ is nearly $\theta$-supercompact for some $\theta\geq\kappa^+$ for which $\theta^{{<}\theta}=\theta$, then AD holds in $L(\mathbb{R})$. In particular, if $\kappa$ is nearly $\kappa^+$-supercompact and $2^\kappa=\kappa^+$, then AD holds in $L(\mathbb{R})$.

Victoria Gitman

Victoria Gitman earned her Ph.D. under my supervision at the CUNY Graduate Center in June, 2007.  For her dissertation work, Victoria had chosen a very difficult problem, the 1962 question of Dana Scott to characterize the standard systems of models of Peano Arithmetic, a question in the field of models of arithmetic that had been open for over forty years. Victoria was able to make progress, now published in several papers, by using an inter-disciplinary approach, applying set-theoretic ideas—including a use of the proper forcing axiom PFA—to the problem in the area of models of arithmetic, where such methods hadn’t often yet arisen.  Ultimately, she showed under PFA that every arithmetically closed proper Scott set is the standard system of a model of PA.  This result extends the classical result to a large new family of Scott sets, providing for these sets an affirmative solution to Scott’s problem.  In other dissertation work, Victoria untangled the confusing mass of ideas surrounding various Ramsey-like large cardinal concepts, ultimately separating them into a beautiful hierarchy, a neighborhood of the vast large cardinal hierarchy intensely studied by set theorists.  (Please see the diagram in her dissertation.)  Victoria holds a tenure-track position at the New York City College of Technology of CUNY.

Victoria Gitman

web page | math genealogy | MathSciNet | ar$\chi$iv | google scholar | related posts

Victoria Gitman, “Applications of the Proper Forcing Axiom to Models of Peano Arithmetic,”  Ph.D. dissertation for the Graduate Center of the City University of New York, June 2007.

Abstract. In Chapter 1, new results are presented on Scott’s Problem in the subject of models of Peano Arithmetic. Some forty years ago, Dana Scott showed that countable Scott sets are exactly the countable standard systems of models of PA, and two decades later, Knight and Nadel extended his result to Scott sets of size $\omega_1$. Here it is shown that assuming the Proper Forcing Axiom, every arithmetically closed proper Scott set is the standard system of a model of PA. In Chapter 2, new large cardinal axioms, based on Ramsey-like embedding properties, are introduced and placed within the large cardinal hierarchy. These notions generalize the seldom encountered embedding characterization of Ramsey cardinals. I also show how these large cardinals can be used to obtain indestructibility results for Ramsey cardinals.

Thomas Johnstone

Thomas Johnstone earned his Ph.D. under my supervision in June, 2007 at the CUNY Graduate Center.  Tom likes to get thoroughly to the bottom of a problem, and this indeed is what he did in his dissertation work on the forcing-theoretic aspects of unfoldable cardinals.  He seemed to want always to dig deeper, seeking out the unstated general phenomenon behind the results.  His characteristic style of giving a seminar talk—pure mathematical pleasure to attend—is to explain not only why the mathematical fact is true, but also why the proof must be the way that it is.  Thomas holds a tenure-track position at the New York City College of Technology of CUNY.

Thomas A. Johnstone

web page | math genealogy | MathSciNet | ar$\chi$iv | google scholar | related posts
 

Thomas A. Johnstone, “Strongly unfoldable cardinals made indestructible,” Ph.D. dissertation, The Graduate Center of the City University of New York, June 2007.

Abstract. I provide indestructibility results for weakly compact, indescribable and strongly unfoldable cardinals. In order to make these large cardinals indestructible, I assume the existence of a strongly unfoldable cardinal $\kappa$, which is a hypothesis consistent with $V=L$. The main result shows that any strongly unfoldable cardinal $\kappa$ can be made indestructible by all ${<}\kappa$-closed forcing which does not collapse $\kappa^{+}$. As strongly unfoldable cardinals strengthen both indescribable and weakly compact cardinals, I obtain indestructibility for these cardinals also, thereby reducing the large cardinal hypothesis of previously known indestructibility results for these cardinals significantly. Finally, I use the developed methods to show the consistency of a weakening of the Proper Forcing Axiom $\rm PFA$ relative to the existence of a strongly unfoldable cardinal.

Singular cardinals and strong extenders

  • A. W. Apter, J. Cummings, and J. D. Hamkins, “Singular cardinals and strong extenders,” Cent. Eur. J. Math., vol. 11, iss. 9, pp. 1628-1634, 2013.  
    @article {ApterCummingsHamkins2013:SingularCardinalsAndStrongExtenders,
    AUTHOR = {Apter, Arthur W. and Cummings, James and Hamkins, Joel David},
    TITLE = {Singular cardinals and strong extenders},
    JOURNAL = {Cent. Eur. J. Math.},
    FJOURNAL = {Central European Journal of Mathematics},
    VOLUME = {11},
    YEAR = {2013},
    NUMBER = {9},
    PAGES = {1628--1634},
    ISSN = {1895-1074},
    MRCLASS = {03E55 (03E35 03E45)},
    MRNUMBER = {3071929},
    MRREVIEWER = {Samuel Gomes da Silva},
    DOI = {10.2478/s11533-013-0265-1},
    URL = {http://jdh.hamkins.org/singular-cardinals-strong-extenders/},
    eprint = {1206.3703},
    archivePrefix = {arXiv},
    primaryClass = {math.LO},
    }

Brent Cody asked the question whether the situation can arise that one has an elementary embedding $j:V\to M$ witnessing the $\theta$-strongness of a cardinal $\kappa$, but where $\theta$ is regular in $M$ and singular in $V$.

In this article, we investigate the various circumstances in which this does and does not happen, the circumstances under which there exist a singular cardinal $\mu$ and a short $(\kappa, \mu)$-extender $E$ witnessing “$\kappa$ is $\mu$-strong”, such that $\mu$ is singular in $Ult(V, E)$.

Climb into Cantor's attic

Please climb into Cantor’s attic, where you will find infinities of all sizes.  The site aims to be a comprehensive resource for the mathematical logic community, containing information about all mathematical concepts of infinity, including especially detailed information about the large cardinal hierarchy, as well as information about all other prominent specific ordinals and cardinals in mathematical logic and set theory, and how they are related.   We aim that Cantor’s attic will be the definitive on-line home of these various notions.  Please link to us whenever you need to link to a large cardinal or ordinal concept.

Cantor’s attic is the result of a community effort, and you can help improve this resource by joining our community.  We welcome contributions from knowledgeable experts in mathematical logic.  Please come and make a contribution!  You can create new pages, edit existing pages, add references, all using the same mediawiki software that powers wikipedia.  Further information about how to help is available at the Cantor’s attic community portal.

Cantor’s attic was founded in December 2011 by myself and Victoria Gitman.  We have only just begun, and it is a good time to get involved.  Feel free to contact me for advice or specific suggestions about how you might contribute.