Modal model theory as mathematical potentialism, Oslo online Potentialism Workshop, September 2020

This will be a talk for the Oslo potentialism workshop, Varieties of Potentialism, to be held online via Zoom on 23 September 2020, from noon to 18:40 CEST (11am to 17:40 UK time). My talk is scheduled for 13:10 CEST (12:10 UK time). Further details about access and registration are availavle on the conference web page.

Abstract. I shall introduce and describe the subject of modal model theory, in which one studies a mathematical structure within a class of similar structures under an extension concept, giving rise to mathematically natural notions of possibility and necessity, a form of mathematical potentialism. We study the class of all graphs, or all groups, all fields, all orders, or what have you; a natural case is the class $\text{Mod}(T)$ of all models of a fixed first-order theory $T$. In this talk, I shall describe some of the resulting elementary theory, such as the fact that the $\mathcal{L}$ theory of a structure determines a robust fragment of its modal theory, but not all of it. The class of graphs illustrates the remarkable power of the modal vocabulary, for the modal language of graph theory can express connectedness, colorability, finiteness, countability, size continuum, size $\aleph_1$, $\aleph_2$, $\aleph_\omega$, $\beth_\omega$, first $\beth$-fixed point, first $\beth$-hyper-fixed-point and much more. When augmented with the actuality operator @, modal graph theory becomes fully bi-interpretable with truth in the set-theoretic universe. This is joint work with Wojciech Wołoszyn.

Choiceless large cardinals and set-theoretic potentialism

[bibtex key=”CutoloHamkins:Choiceless-large-cardinals-and-set-theoretic-potentialism”]

Abstract. We define a potentialist system of ZF-structures, that is, a collection of possible worlds in the language of ZF connected by a binary accessibility relation, achieving a potentialist account of the full background set-theoretic universe $V$. The definition involves Berkeley cardinals, the strongest known large cardinal axioms, inconsistent with the Axiom of Choice. In fact, as background theory we assume just ZF. It turns out that the propositional modal assertions which are valid at every world of our system are exactly those in the modal theory S4.2. Moreover, we characterize the worlds satisfying the potentialist maximality principle, and thus the modal theory S5, both for assertions in the language of ZF and for assertions in the full potentialist language.

Philosophy of Mathematics, graduate lecture seminar, Oxford, Trinity term 2020

This will be a graduate-level lecture seminar on the Philosophy of Mathematics held during Trinity term 2020 here at the University of Oxford, co-taught by Dr. Wesley Wrigley and myself.

The broad theme for the seminar will be incompleteness, referring both to the incompleteness of our mathematical theories, as exhibited in Gödel’s incompleteness theorems, and also to the incompleteness of our mathematical domains, as exhibited in mathematical potentialism. 

All sessions will be held online using the Zoom meeting platform. Please contact Professor Wrigley for access to the seminar (wesley.wrigley@philosophy.ox.ac.uk). The Zoom meetings will not be recorded or posted online.

The basic plan will be that the first four sessions, in weeks 1-4, will be led by Dr. Wrigley and concentrate on his current research on the incompleteness of mathematics and the philosophy of Kurt Gödel, while weeks 5-8 will be led by Professor Hamkins, who will concentrate on topics in potentialism. 

Readings as detailed below:

Weeks 1 & 2  (28 April, 5 May)
Kurt Gödel “Some basic theorems on the foundations of mathematics and their implications (*1951)”,  in: Feferman, S. et al.  (eds) Kurt Gödel: Collected Works Volume III, pp.304-323. OUP (1995). And Wrigley “Gödel’s Disjunctive Argument”. (Also available on Canvas).

Week 3 (12th May)
Donald Martin, “Gödel’s Conceptual Realism”, Bulletin of Symbolic Logic 11:2 (2005), 207- 224 https://www.jstor.org/stable/1556750. And Wrigley “Conceptual Platonism.”

Week 4 (19th May)
Bertrand Russell “The Regressive Method of Discovering the Premises of Mathematics (1907)”, in: Moore , G. (ed) The Collected Papers of Bertrand Russell, Volume 5, pp.571-580. Routledge (2014). And Wrigley “Quasi-Scientific Methods of Justification in Set Theory.”

Week 5 (26th May)
Øystein Linnebo & Stewart Shapiro, “Actual and potential infinity”, Noûs 53:1 (2019), 160-191, https://doi.org/10.1111/nous.12208. And Øystein Linnebo. “Putnam on Mathematics as Modal Logic,” In: Hellman G., Cook R. (eds) Hilary Putnam on Logic and Mathematics. Outstanding Contributions to Logic, vol 9. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96274-0_14 

Week 6 (2nd June)
The topic this week is: tools for analyzing the modal logic of a potentialist system. This seminar will be based around the slides for my talk “Potentialism and implicit actualism in the foundations of mathematics,” given for the Jowett Society in Oxford last year. The slides are available at: http://jdh.hamkins.org/potentialism-and-implicit-actualism-in-the-foundations-of-mathematics-jowett-society-oxford-february-2019.  Interested readers may also wish to consult the more extensive slides for the three-lecture workshop I gave on potentialism at the Hejnice Winter School in 2018; the slides are available at http://jdh.hamkins.org/set-theoretic-potentialism-ws2018. My intent is to concentrate on the nature and significance of control statements, such as buttons, switches, ratchets and railyards, for determining the modal logic of a potentialist system.

Week 7 (9th June)
Joel David Hamkins and Øystein Linnebo. “The modal logic of set-theoretic potentialism and the potentialist maximality principles”. Review of Symbolic Logic (2019). https://doi.org/10.1017/S1755020318000242. arXiv:1708.01644. http://wp.me/p5M0LV-1zC. This week, we shall see how the control statements allow us to analyze precisely the modal logic of various conceptions of set-theoretic potentialism.

Week 8 (16th June)
Joel David Hamkins, “Arithmetic potentialism and the universal algorithm,” arxiv: 1801.04599, available at http://jdh.hamkins.org/arithmetic-potentialism-and-the-universal-algorithm. Please feel free to skip over the more technical parts of this paper. In the seminar discussion, we shall concentrate on the basic idea of arithmetic potentialism, including a full account of the universal algorithm and the significance of it for potentialism, as well as remarks of the final section of the paper.

Modal model theory, STUK 4, Oxford, December 2019

This will be my talk for the Set Theory in the United Kingdom 4, a conference to be held in Oxford on 14 December 2019. I am organizing the conference with Sam Adam-Day. 

Modal model theory

Abstract. I shall introduce the subject of modal model theory, a research effort bringing modal concepts and vocabulary into model theory. For any first-order theory T, we may naturally consider the models of T as a Kripke model under the submodel relation, and thereby naturally expand the language of T to include the modal operators. In the class of all graphs, for example, a statement is possible in a graph, if it is true in some larger graph, having that graph as an induced subgraph, and a statement is necessary when it is true in all such larger graphs. The modal expansion of the language is quite powerful: in graphs it can express k-colorability and even finiteness and countability. The main idea applies to any collection of models with an extension concept. The principal questions are: what are the modal validities exhibited by the class of models or by individual models? For example, a countable graph validates S5 for graph theoretic assertions with parameters, for example, just in case it is the countable random graph; and without parameters, just in case it is universal for all finite graphs. Similar results apply with digraphs, groups, fields and orders. This is joint work with Wojciech Wołoszyn.

Hand-written lecture notes

The $\Sigma_1$-definable universal finite sequence

[bibtex key=”HamkinsWilliams2021:The-universal-finite-sequence”]

Abstract. We introduce the $\Sigma_1$-definable universal finite sequence and prove that it exhibits the universal extension property amongst the countable models of set theory under end-extension. That is, (i) the sequence is $\Sigma_1$-definable and provably finite; (ii) the sequence is empty in transitive models; and (iii) if $M$ is a countable model of set theory in which the sequence is $s$ and $t$ is any finite extension of $s$ in this model, then there is an end extension of $M$ to a model in which the sequence is $t$. Our proof method grows out of a new infinitary-logic-free proof of the Barwise extension theorem, by which any countable model of set theory is end-extended to a model of $V=L$ or indeed any theory true in a suitable submodel of the original model. The main theorem settles the modal logic of end-extensional potentialism, showing that the potentialist validities of the models of set theory under end-extensions are exactly the assertions of S4. Finally, we introduce the end-extensional maximality principle, which asserts that every possibly necessary sentence is already true, and show that every countable model extends to a model satisfying it.


Introducing modal model theory

Let me introduce to you the topic of modal model theory, injecting some ideas from modal logic into the traditional subject of model theory in mathematical logic.

For example, we may consider the class of all models of some first-order theory, such as the class of all graphs, or the class of all groups, or all fields or what have you. In general, we have $\newcommand\Mod{\text{Mod}}\Mod(T)$, where $T$ is a first-order theory in some language $L$.

We may consider $\Mod(T)$ as a potentialist system, a Kripke model of possible worlds, where each model accesses the larger models, of which it is a submodel. So $\newcommand\possible{\Diamond}\possible\varphi$ is true at a model $M$, if there is a larger model $N$ in which $\varphi$ holds, and $\newcommand\necessary{\Box}\necessary\varphi$ is true at $M$, if $\varphi$ holds in all larger models.

In this way, we enlarge the language $L$ to include these modal operators. Let $\possible(L)$ be the language obtained by closing $L$ under the modal operators and Boolean connectives; and let $L^\possible$ also close under quantification. The difference is whether a modal operator falls under the scope of a quantifier.

Recently, in a collaborative project with Wojciech Aleksander Wołoszyn, we made some progress, which I’d like to explain. (We also have many further results, concerning the potentialist validities of various natural instances of $\Mod(T)$, but those will wait for another post.)

Theorem. If models $M$ and $N$ are elementarily equivalent, that is, if they have the same theory in the language of $L$, then they also have the same theory in the modal language $\possible(L)$.

Proof. We show that whenever $M\equiv N$ in the language of $L$, then $M\models\varphi\iff N\models\varphi$ for sentences $\varphi$ in the modal language $\possible(L)$, by induction on $\varphi$.

Of course, by assumption the statement is true for sentences $\varphi$ in the base language $L$. And the property is clearly preserved by Boolean combinations. What remains is the modal case. Suppose that $M\equiv N$ and $M\models\possible\varphi$. So there is some extension model $M\subset W\models\varphi$.

Since $M\equiv N$, it follows by the Keisler-Shelah theorem that $M$ and $N$ have isomorphic ultrapowers $\prod_\mu M\cong\prod_\mu N$, for some ultrafilter $\mu$. It is easy to see that isomorphic structures satisfy exactly the same modal assertions in the class of all models of a theory. Since $M\subset W$, it follows that the ultrapower of $M$ is extended to (a copy of) the ultrapower of $W$, and so $\prod_\mu M\models\possible\varphi$, and therefore also $\prod_\mu N\models\possible\varphi$. From this, since $N$ embeds into its ultrapower $\prod_\mu N$, it follows also that $N\models\possible\varphi$, as desired. $\Box$

Corollary. If one model elementarily embeds into another $M\prec N$, in the language $L$ of these structures, then this embedding is also elementary in the language $\possible(L)$.

Proof. To say $M\prec N$ in language $L$ is the same as saying that $M\equiv N$ in the language $L_M$, where we have added constants for every element of $M$, and interpreted these constants in $N$ via the embedding. Thus, by the theorem, it follows that $M\equiv N$ in the language $\possible(L_M)$, as desired. $\Box$

For example, every model $M$ is elementarily embedding into its ultrapowers $\prod_\mu M$, in the language $\possible(L)$.

We’d like to point out next that these results do not extend to elementary equivalence in the full modal language $L^\possible$.

For a counterexample, let’s work in the class of all simple graphs, in the language with a binary predicate for the edge relation. (We’ll have no parallel edges, and no self-edges.) So the accessibility relation here is the induced subgraph relation.

Lemma. The 2-colorability of a graph is expressible in $\possible(L)$. Similarly for $k$-colorability for any finite $k$.

Proof. A graph is 2-colorable if we can partition its vertices into two sets, such that a vertex is in one set if and only if all its neighbors are in the other set. This can be effectively coded by adding two new vertices, call them red and blue, such that every node (other than red and blue) is connected to exactly one of these two points, and a vertex is connected to red if and only if all its neighbors are connected to blue, and vice versa. If the graph is $2$-colorable, then there is an extension realizing this statement, and if there is an extension realizing the statement, then (even if more than two points were added) the original graph must be $2$-colorable. $\Box$

A slightly more refined observation is that for any vertex $x$ in a graph, we can express the assertion, “the component of $x$ is $2$-colorable” by a formula in the language $\possible(L)$. We simply make the same kind of assertion, but drop the requirement that every node gets a color, and insist only that $x$ gets a color and the coloring extends from a node to any neighbor of the node, thereby ensuring the full connected component will be colored.

Theorem. There are two graphs that are elementary equivalent in the language $L$ of graph theory, and hence also in the language $\possible(L)$, but they are not elementarily equivalent in the full modal language $L^\possible$.

Proof. Let $M$ be a graph consisting of disjoint copies of a 3-cycle, a 5-cycle, a 7-cycle, and so on, with one copy of every odd-length cycle. Let $M^*$ be an ultrapower of $M$ by a nonprincipal ultrafilter.

Thus, $M^*$ will continue to have one 3-cycle, one 5-cycle, one 7-cycle and on on, for all the finite odd-length cycles, but then $M^*$ will have what it thinks are non-standard odd-length cycles, except that it cannot formulate the concept of “odd”. What it actually has are a bunch of $\mathbb{Z}$-chains.

In particular, $M^*$ thinks that there is an $x$ whose component is $2$-colorable, since a $\mathbb{Z}$-chain is $2$-colorable.

But $M$ does not think that there is an $x$ whose component is $2$-colorable, because an odd-length finite cycle is not $2$-colorable. $\Box$.

Since we used an ultrapower, the same example also shows that the corollary above does not generalize to the full modal language. That is, we have $M$ embedding elementarily into its ultrapower $M^*$, but it is not elementary in the language $L^\possible$.

Let us finally notice that the Łoś theorem for ultraproducts fails even in the weaker modal language $\possible(L)$.

Theorem. There are models $M_i$ for $i\in\mathbb{N}$ and a sentence $\varphi$ in the language of these models, such that every nonprincipal ultraproduct $\prod_\mu M_i$ satisfies $\possible\varphi$, but no $M_i$ satisfies $\possible\varphi$. .

Proof. In the class of all graphs, using the language of graph theory, let the $M_i$ be all the odd-length cycles. The ultraproduct $\prod_\mu M_i$ consists entirely of $\mathbb{Z}$-chains. In particular, the ultraproduct graph is $2$-colorable, but none of the $M_i$ are $2$-colorable. $\Box$

Computational self-reference and the universal algorithm, Queen Mary University of London, June 2019

This will be a talk for the Theory Seminar for the theory research group in Theoretical Computer Science at Queen Mary University of London. The talk will be held 4 June 2019 1:00 pm, ITL first floor.

Abstract. Curious, often paradoxical instances of self-reference inhabit deep parts of computability theory, from the intriguing Quine programs and Ouroboros programs to more profound features of the Gödel phenomenon. In this talk, I shall give an elementary account of the universal algorithm, showing how the capacity for self-reference in arithmetic gives rise to a Turing machine program $e$, which provably enumerates a finite set of numbers, but which can in principle enumerate any finite set of numbers, when it is run in a suitable model of arithmetic. In this sense, every function becomes computable, computed all by the same universal program, if only it is run in the right world. Furthermore, the universal algorithm can successively enumerate any desired extension of the sequence, when run in a suitable top-extension of the universe. An analogous result holds in set theory, where Woodin and I have provided a universal locally definable finite set, which can in principle be any finite set, in the right universe, and which can furthermore be successively extended to become any desired finite superset of that set in a suitable top-extension of that universe.

The modal logic of potentialism, ILLC Amsterdam, May 2019

This will be a talk at the Institute of Logic, Language and Computation (ILLC) at the University of Amsterdam for events May 11-12, 2019. See Joel David Hamkins in Amsterdam 2019.

Job Adriaenszoon Berckheyde [Public domain]

Abstract: Potentialism can be seen as a fundamentally model-theoretic notion, in play for any class of mathematical structures with an extension concept, a notion of substructure by which one model extends to another. Every such model-theoretic context can be seen as a potentialist framework, a Kripke model whose modal validities one can investigate. In this talk, I’ll explain the tools we have for analyzing the potentialist validities of such a system, with examples drawn from the models of arithmetic and set theory, using the universal algorithm and the universal definition.

Potentialism and implicit actualism in the foundations of mathematics, Jowett Society lecture, Oxford, February 2019

This will be a talk for the Jowett Society on 8 February, 2019. The talk will take place in the Oxford Faculty of Philosophy, 3:30 – 5:30pm, in the Lecture Room of the Radcliffe Humanities building.

Abstract. Potentialism is the view, originating in the classical dispute between actual and potential infinity, that one’s mathematical universe is never fully completed, but rather unfolds gradually as new parts of it increasingly come into existence or become accessible or known to us. Recent work emphasizes the modal aspect of potentialism, while decoupling it from arithmetic and from infinity: the essence of potentialism is about approximating a larger universe by means of universe fragments, an idea that applies to set-theoretic as well as arithmetic foundations. The modal language and perspective allows one precisely to distinguish various natural potentialist conceptions in the foundations of mathematics, whose exact modal validities are now known. Ultimately, this analysis suggests a refocusing of potentialism on the issue of convergent inevitability in comparison with radical branching. I shall defend the theses, first, that convergent potentialism is implicitly actualist, and second, that we should understand ultrafinitism in modal terms as a form of potentialism, one with surprising parallels to the case of arithmetic potentialism.

Jowett Society talk entry | my posts on potentialism | Slides

Set-theoretic potentialism and the universal finite set, Scandinavian Logic Symposium, June 2018

This will be an invited talk at the Scandinavian Logic Symposium SLS 2018, held at the University of Gothenburg in Sweden, June 11-13, 2018.

Abstract. Providing a set-theoretic analogue of the universal algorithm, I shall define a certain finite set in set theory
$$\{x\mid\varphi(x)\}$$
and prove that it exhibits a universal extension property: it can be any desired particular finite set in the right set-theoretic universe and it can become successively any desired larger finite set in top-extensions of that universe. Specifically, ZFC proves the set is finite; the definition $\varphi$ has complexity $\Sigma_2$ and therefore any instance of it $\varphi(x)$ is locally verifiable inside any sufficiently large $V_\theta$; the set is empty in any transitive model; and if $\varphi$ defines the set $y$ in some countable model $M$ of ZFC and $y\subset z$ for some finite set $z$ in $M$, then there is a top-extension of $M$ to a model $N$ of ZFC in which $\varphi$ defines the new set $z$. I shall draw out consequences of the universal finite set for set-theoretic potentialism and discuss several issues it raises in the philosophy of set theory.

The talk will include joint work with W. Hugh Woodin, Øystein Linnebo and others.

Slides: Set-theoretic potentialism and universal finite set SLS 2018

The universal finite set, Rutgers Logic Seminar, April 2018

This will be a talk for the Rutgers Logic Seminar, April 2, 2018. Hill Center, Busch campus.

Abstract. I shall define a certain finite set in set theory $$\{x\mid\varphi(x)\}$$ and prove that it exhibits a universal extension property: it can be any desired particular finite set in the right set-theoretic universe and it can become successively any desired larger finite set in top-extensions of that universe. Specifically, ZFC proves the set is finite; the definition $\varphi$ has complexity $\Sigma_2$ and therefore any instance of it $\varphi(x)$ is locally verifiable inside any sufficient $V_\theta$; the set is empty in any transitive model and others; and if $\varphi$ defines the set $y$ in some countable model $M$ of ZFC and $y\subset z$ for some finite set $z$ in $M$, then there is a top-extension of $M$ to a model $N$ in which $\varphi$ defines the new set $z$.  The definition can be thought of as an idealized diamond sequence, and there are consequences for the philosophical theory of set-theoretic top-extensional potentialism.

This is joint work with W. Hugh Woodin.

Modal principles of potentialism, Oxford, January 2018

This was a talk I gave at University College Oxford to the philosophy faculty.

Abstract. One of my favorite situations occurs when philosophical ideas or issues inspire a bit of mathematical analysis, which in turn raises further philosophical questions and ideas, in a fruitful cycle. The topic of potentialism originates, after all, in the classical dispute between actual and potential infinity. Linnebo and Shapiro and others have emphasized the modal nature of potentialism, de-coupling it from infinity: the essence of potentialism is about approximating a larger universe or structure by means of partial structures or universe fragments. In several mathematical projects, my co-authors and I have found the exact modal validities of several natural potentialist concepts arising in the foundations of mathematics, including several kinds of set-theoretic and arithmetic potentialism. Ultimately, the variety of kinds of potentialism suggest a refocusing of potentialism on the issue of convergent inevitability in comparison with radical branching. I defended the theses, first, that convergent potentialism is implicitly actualist, and second, that we should understand ultrafinitism in modal terms as a form of potentialism, one with suprising parallels to the case of arithmetic potentialism.

Here are my lecture notes that I used as a basis for the talk:

https://photos.app.goo.gl/DcaXV3sLVU4enaxv8

For a fuller, more technical account of potentialism, see the three-lecture tutorial series I gave for the Logic Winter School 2018 in Hejnice: Set-theoretic potentialism, and follow the link to the slides.

The modal logic of arithmetic potentialism and the universal algorithm

[bibtex key=”Hamkins:The-modal-logic-of-arithmetic-potentialism”]

Abstract. Natural potentialist systems arise from the models of arithmetic when they are considered under their various natural extension concepts, such as end-extensions, arbitrary extension, $\Sigma_n$-elementary extensions, conservative extensions and more. For these potentialist systems, I prove, a propositional modal assertion is valid in a model of arithmetic, with respect to assertions in the language of arithmetic with parameters, exactly when it is an assertion of S4. Meanwhile, with respect to sentences, the validities of a model are always between S4 and S5, and these bounds are sharp in that both endpoints are realized. The models validating exactly S5 are the models of the arithmetic maximality principle, which asserts that every possibly necessary statement is already true, and these models are equivalently characterized as those satisfying a maximal $\Sigma_1$ theory. The main proof makes fundamental use of the universal algorithm, of which this article provides a self-contained account.

 

In this article, I consider the models of arithmetic under various natural extension concepts, including end-extensions, arbitrary extensions, $\Sigma_n$-elementary extensions, conservative extensions and more. Each extension concept gives rise to an arithmetic potentialist system, a Kripke model of possible arithmetic worlds, and the main goal is to discover the modal validities of these systems.

For most of the extension concepts, a modal assertion is valid with respect to assertions in the language of arithmetic, allowing parameters, exactly when it is an assertion of the modal theory S4. For sentences, however, the modal validities form a theory between S4 and S5, with both endpoints being realized. A model of arithmetic validates S5 with respect to sentences just in case it is a model of the arithmetic maximality principle, and these models are equivalently characterized as those realizing a maximal $\Sigma_1$ theory.

The main argument relies fundamentally on the universal algorithm, the theorem due to Woodin that there is a Turing machine program that can enumerate any finite sequence in the right model of arithmetic, and furthermore this model can be end-extended so as to realize any further extension of that sequence available in the model. In the paper, I give a self-contained account of this theorem using my simplified proof.

The paper concludes with philosophical remarks on the nature of potentialism, including a discussion of how the linear inevitability form of potentialism is actually much closer to actualism than the more radical forms of potentialism, which exhibit branching possibility. I also propose to view the philosphy of ultrafinitism in modal terms as a form of potentialism, pushing the issue of branching possibility in ultrafinitism to the surface.

Set-theoretic potentialism, Winter School in Abstract Analysis 2018, Hejnice, Czech Republic

This will be a tutorial lecture series for the Winter School in Abstract Analysis 2018, held in Hejnice of the Czech Republic.

Abstract. I shall introduce and develop the theory of set-theoretic potentialism. A potentialist system is a collection of first-order structures, all in the same language $\mathcal{L}$, equipped with an accessibility relation refining the inclusion relation. Any such system, viewed as an inflationary-domain Kripke model, provides a natural interpretation for the modal extension of the underlying language $\mathcal{L}$ to include the modal operators. We seek to understand a given potentialist system by analyzing which modal assertions are valid in it.

Set theory exhibits an enormous variety of natural potentialist systems. For example, with forcing potentialism, one considers the models of set theory, each accessing its forcing extensions; with rank potentialism, one considers the collection of of rank-initial segments $V_\alpha$ of a given set-theoretic universe; with Grothendieck-Zermelo potentialism, one has the collection of $V_\kappa$ for (a proper class of) inaccessible cardinals $\kappa$; with top-extensional potentialism, one considers the collection of countable models of ZFC under the top-extension relation; and so on with many other natural examples.

In this tutorial, we shall settle the precise potentialist validities of each of these potentialist systems and others, and we shall develop the general tools that enable one to determine the modal theory of a given potentialist system. Many of these arguments proceed by building connections between certain sweeping general features of the models in the potentialist system and certain finite combinatorial objects such as trees or lattices. A key step involves finding certain kinds of independent control statements — buttons, switches, ratchets and rail-switches — in the collection of models.

Slides

The universal finite set

[bibtex key=”HamkinsWoodin:The-universal-finite-set”]

Abstract. We define a certain finite set in set theory $\{x\mid\varphi(x)\}$ and prove that it exhibits a universal extension property: it can be any desired particular finite set in the right set-theoretic universe and it can become successively any desired larger finite set in top-extensions of that universe. Specifically, ZFC proves the set is finite; the definition $\varphi$ has complexity $\Sigma_2$, so that any affirmative instance of it $\varphi(x)$ is verified in any sufficiently large rank-initial segment of the universe $V_\theta$; the set is empty in any transitive model and others; and if $\varphi$ defines the set $y$ in some countable model $M$ of ZFC and $y\subseteq z$ for some finite set $z$ in $M$, then there is a top-extension of $M$ to a model $N$ in which $\varphi$ defines the new set $z$. Thus, the set shows that no model of set theory can realize a maximal $\Sigma_2$ theory with its natural number parameters, although this is possible without parameters. Using the universal finite set, we prove that the validities of top-extensional set-theoretic potentialism, the modal principles valid in the Kripke model of all countable models of set theory, each accessing its top-extensions, are precisely the assertions of S4. Furthermore, if ZFC is consistent, then there are models of ZFC realizing the top-extensional maximality principle.

Woodin had established the universal algorithm phenomenon, showing that there is a Turing machine program with a certain universal top-extension property in models of arithmetic (see also work of Blanck and Enayat 2017 and upcoming paper of mine with Gitman and Kossak; also my post The universal algorithm: a new simple proof of Woodin’s theorem). Namely, the program provably enumerates a finite set of natural numbers, but it is relatively consistent with PA that it enumerates any particular desired finite set of numbers, and furthermore, if $M$ is any model of PA in which the program enumerates the set $s$ and $t$ is any (possibly nonstandard) finite set in $M$ with $s\subseteq t$, then there is a top-extension of $M$ to a model $N$ in which the program enumerates exactly the new set $t$. So it is a universal finite computably enumerable set, which can in principle be any desired finite set of natural numbers in the right arithmetic universe and become any desired larger finite set in a suitable larger arithmetic universe.

I had inquired whether there is a set-theoretic analogue of this phenomenon, using $\Sigma_2$ definitions in set theory in place of computable enumerability (see The universal definition — it can define any mathematical object you like, in the right set-theoretic universe). The idea was that just as a computably enumerable set is one whose elements are gradually revealed as the computation proceeds, a $\Sigma_2$-definable set in set theory is precisely one whose elements become verified at some level $V_\theta$ of the cumulative set-theoretic hierarchy as it grows. In this sense, $\Sigma_2$ definability in set theory is analogous to computable enumerability in arithmetic.

Main Question. Is there a universal $\Sigma_2$ definition in set theory, one which can define any desired particular set in some model of \ZFC\ and always any desired further set in a suitable top-extension?

I had noticed in my earlier post that one can do this using a $\Pi_3$ definition, or with a $\Sigma_2$ definition, if one restricts to models of a certain theory, such as $V\neq\text{HOD}$ or the eventual GCH, or if one allows $\{x\mid\varphi(x)\}$ sometimes to be a proper class.

Here, we provide a fully general affirmative answer with the following theorem.

Main Theorem. There is a formula $\varphi(x)$ of complexity $\Sigma_2$ in the language of set theory, provided in the proof, with the following properties:

  1. ZFC proves that $\{x\mid \varphi(x)\}$ is a finite set.
  2. In any transitive model of \ZFC\ and others, this set is empty.
  3. If $M$ is a countable model of ZFC in which $\varphi$ defines the set $y$ and $z\in M$ is any finite set in $M$ with $y\subseteq z$, then there is a top-extension of $M$ to a model $N$ in which $\varphi$ defines exactly $z$.

By taking the union of the set defined by $\varphi$, an arbitrary set can be achieved; so the finite-set result as stated in the main theorem implies the arbitrary set case as in the main question. One can also easily deduce a version of the theorem to give a universal countable set or a universal set of some other size (for example, just take the union of the countable elements of the universal set). One can equivalently formulate the main theorem in terms of finite sequences, rather than sets, so that the sequence is extended as desired in the top-extension. The sets $y$ and $z$ in statement (3) may be nonstandard finite, if $M$ if $\omega$-nonstandard.

We use this theorem to establish the fundamental validities of top-extensional set-theoretic potentialism. Specifically, in the potentialist system consisting of the countable models of ZFC, with each accessing its top extensions, the modal validities with respect to substitution instances in the language of set theory, with parameters, are exactly the assertions of S4. When only sentences are considered, the validities are between S4 and S5, with both endpoints realized.

In particular, we prove that if ZFC is consistent, then there is a model $M$ of ZFC with the top-extensional maximality principle: any sentence $\sigma$ in the language of set theory which is true in some top extension $M^+$ and all further top extensions of $M^+$, is already true in $M$.

This principle is true is any model of set theory with a maximal $\Sigma_2$ theory, but it is never true when $\sigma$ is allowed to have natural-number parameters, and in particular, it is never true in any $\omega$-standard model of set theory.

Click through to the arXiv for more, the full article in pdf.

[bibtex key=”HamkinsWoodin:The-universal-finite-set”]