Worldly cardinals are not always downwards absolute

 

UniversumI recently came to realize that worldly cardinals are not necessarily downward absolute to transitive inner models. That is, it can happen that a cardinal $\kappa$ is worldly in the full set-theoretic universe $V$, but not in some transitive inner model $W$, even when $W$ is itself a model of ZFC. The observation came out of some conversations I had with Alexander Block from Hamburg during his recent research visit to New York. Let me explain the argument.

A cardinal $\kappa$ is inaccessible, if it is an uncountable regular strong limit cardinal. The structure $V_\kappa$, consisting of the rank-initial segment of the set-theoretic universe up to $\kappa$, which can be generated from the empty set by applying the power set operation $\kappa$ many times, has many nice features. In particular, it is transitive model of $\newcommand\ZFC{\text{ZFC}}\ZFC$. The models $V_\kappa$ for $\kappa$ inaccessible are precisely the uncountable Grothendieck universes used in category theory.

Although the inaccessible cardinals are often viewed as the entryway to the large cardinal hierarchy, there is a useful large cardinal concept weaker than inaccessibility. Namely, a cardinal $\kappa$ is worldly, if $V_\kappa$ is a model of $\ZFC$. Every inaccessible cardinal is worldly, and in fact a limit of worldly cardinals, because if $\kappa$ is inaccessible, then there is an elementary chain of cardinals $\lambda<\kappa$ with $V_\lambda\prec V_\kappa$, and all such $\lambda$ are worldly. The regular worldly cardinals are precisely the inaccessible cardinals, but the least worldly cardinal is always singular of cofinality $\omega$.

The worldly cardinals can be seen as a kind of poor-man’s inaccessible cardinal, in that worldliness often suffices in place of inaccessibility in many arguments, and this sometimes allows one to weaken a large cardinal hypothesis. But meanwhile, they do have some significant strengths. For example, if $\kappa$ is worldly, then $V_\kappa$ satisfies the principle that every set is an element of a transitive model of $\ZFC$.

It is easy to see that inaccessibility is downward absolute, in the sense that if $\kappa$ is inaccessible in the full set-theoretic universe $V$ and $W\newcommand\of{\subseteq}\of V$ is a transitive inner model of $\ZFC$, then $\kappa$ is also inaccessible in $W$. The reason is that $\kappa$ cannot be singular in $W$, since any short cofinal sequence in $W$ would still exist in $V$; and it cannot fail to be a strong limit there, since if some $\delta<\kappa$ had $\kappa$-many distinct subsets in $W$, then this injection would still exist in $V$. So inaccessibility is downward absolute.

The various degrees of hyper-inaccessibility are also downwards absolute to inner models, so that if $\kappa$ is an inaccessible limit of inaccessible limits of inaccessible cardinals, for example, then this is also true in any inner model. This downward absoluteness extends all the way through the hyperinaccessibility hierarchy and up to the Mahlo cardinals and beyond. A cardinal $\kappa$ is Mahlo, if it is a strong limit and the regular cardinals below $\kappa$ form a stationary set. We have observed that being regular is downward absolute, and it is easy to see that every stationary set $S$ is stationary in every inner model, since otherwise there would be a club set $C$ disjoint from $S$ in the inner model, and this club would still be a club in $V$. Similarly, the various levels of hyper-Mahloness are also downward absolute.

So these smallish large cardinals are generally downward absolute. How about the worldly cardinals? Well, we can prove first off that worldliness is downward absolute to the constructible universe $L$.

Observation. If $\kappa$ is worldly, then it is worldly in $L$.

Proof. If $\kappa$ is worldly, then $V_\kappa\models\ZFC$. This implies that $\kappa$ is a beth-fixed point. The $L$ of $V_\kappa$, which is a model of $\ZFC$, is precisely $L_\kappa$, which is also the $V_\kappa$ of $L$, since $\kappa$ must also be a beth-fixed point in $L$. So $\kappa$ is worldly in $L$. QED

But meanwhile, in the general case, worldliness is not downward absolute.

Theorem. Worldliness is not necessarily downward absolute to all inner models. It is relatively consistent with $\ZFC$ that there is a worldly cardinal $\kappa$ and an inner model $W\of V$, such that $\kappa$ is not worldly in $W$.

Proof. Suppose that $\kappa$ is a singular worldly cardinal in $V$. And by forcing if necessary, let us assume the GCH holds in $V$. Let $V[G]$ be the forcing extension where we perform the Easton product forcing $\newcommand\P{\mathbb{P}}\P$, so as to force a violation of the GCH at every regular cardinal $\gamma$. So the stage $\gamma$ forcing is $\newcommand\Q{\mathbb{Q}}\Q_\gamma=\text{Add}(\gamma,\gamma^{++})$.

First, I shall prove that $\kappa$ is worldly in the forcing extension $V[G]$. Since every set of rank less than $\kappa$ is added by some stage less than $\kappa$, it follows that $V_\kappa^{V[G]}$ is precisely $\bigcup_{\gamma<\kappa} V_\kappa[G_\gamma]$. Most of the $\ZFC$ axioms hold easily in $V_\kappa^{V[G]}$; the only difficult case is the collection axiom. And for this, by considering the ranks of witnesses, it suffices to show for every $\gamma<\kappa$ that every function $f:\gamma\to\kappa$ that is definable from parameters in $V_\kappa^{V[G]}$ is bounded. Suppose we have such a function, defined by $f(\alpha)=\beta$ just in case $\varphi(\alpha,\beta,p)$ holds in $V_\kappa^{V[G]}$. Let $\delta<\kappa$ be larger than the rank of $p$. Now consider $V_\kappa[G_\delta]$, which is a set-forcing extension of $V_\kappa$ and therefore a model of $\ZFC$. The fail forcing, from stage $\delta$ up to $\kappa$, is homogeneous in this model. And therefore we know that $f(\alpha)=\beta$ just in case $1$ forces $\varphi(\check\alpha,\check\beta,\check p)$, since these arguments are all in the ground model $V_\kappa[G_\delta]$. So the function is already definable in $V_\kappa[G_\delta]$. Because this is a model of $\ZFC$, the function $f$ is bounded below $\kappa$. So we get the collection axiom in $V_\kappa^{V[G]}$ and hence all of $\ZFC$ there, and so $\kappa$ is worldly in $V[G]$.

For any $A\of\kappa$, let $\P_A$ be the restriction of the Easton product forcing to include only the stages in $A$, and let $G_A$ be the corresponding generic filter. The full forcing $\P$ factors as $\P_A\times\P_{\kappa\setminus A}$, and so $V[G_A]\of V[G]$ is a transitive inner model of $\ZFC$.

But if we pick $A\of\kappa$ to be a short cofinal set in $\kappa$, which is possible because $\kappa$ is singular, then $\kappa$ will not be worldly in the inner model $V[G_A]$, since in $V_\kappa[G_A]$ we will be able to identify that sequence as the places where the GCH fails. So $\kappa$ is not worldly in $V[G_A]$.

In summary, $\kappa$ was worldly in $V[G]$, but not in the transitive inner model $W=V[G_A]$, and so worldliness is not downward absolute. QED

The definable cut of a model of set theory can be changed by small forcing

Cupid carving his bow -- ParmigianinoIf $M$ is a model of ZFC set theory, let $I$ be the definable cut of its ordinals, the collection of ordinals that are below an ordinal $\delta$ of $M$ that is definable in $M$ without parameters. This would include all the ordinals of $M$, if the definable ordinals happen to be unbounded in $M$, but one can also construct examples where the definable cut is bounded in $M$.  Let $M_I$ be the corresponding definable cut of $M$ itself, the rank-initial segment of $M$ determined by $I$, or in other words, the collection of all sets $x$ in $M$ of rank below a definable ordinal of $M$. Equivalently, $$M_I=\bigcup_{\delta\in I} V_\delta^M.$$ It is not difficult to see that this is an elementary substructure $M_I\prec M$, because we can verify the Tarski-Vaught criterion as follows. If $M\models\exists y\ \varphi(x,y)$, where $x\in M_I$, then let $\delta$ be a definable ordinal above the rank of $x$. In this case, the ordinal $\theta$, which is the supremum over all $a\in V_\delta$ of the minimal rank of a set $y$ for which $\varphi(a,y)$, if there is such a $y$. This supremum $\theta$ is definable, and so since $x\in V_\delta$, the minimal rank of a $y$ such that $\varphi(x,y)$ is at most $\theta$. Consequently, since $\theta\in I$, such a $y$ can be found in $M_I$. So we have found the desired witness inside the substructure, and so it is elementary $M_I\prec M$. Note that in the general case, one does not necessarily know that $I$ has a least upper bound in $M$. Under suitable assumptions, it can happen that $I$ is unbounded in $M$, that $I$ is an ordinal of $M$, or that $I$ is bounded in $M$, but has no least upper bound.

What I am interested in for this post is how the definable cut might be affected by forcing. Of course, it is easy to see that if $M$ is definable in $M[G]$, then the definable cut of $M[G]$ is at least as high as the definable cut of $M$, simply because the definable ordinals of $M$ remain definable in $M[G]$.

A second easy observation is that if the definable cut of $M$ is bounded in $M$, then we could perform large collapse forcing, collapsing a cardinal above $I$ to $\omega$, which would of course make every cardinal of $I$ countable in the extension $M[G]$. In this case, since $\omega_1^{M[G]}$ is definable, it would change the definable cut. So this kind of very large forcing can change the definable cut, making it larger.

But what about small forcing? Suppose that the forcing notion $\newcommand\P{\mathbb{P}}\P$ we intend to forcing with is small in the sense that it is in the definable cut $M_I$. This would be true if $\P$ itself were definable, for example, but really we only require that $\P$ has rank less than some definable ordinal of $M$. Can this forcing change the definable cut?

Let me show at least that the definable cut can never go up after small forcing.

Theorem. If $G\subset\P$ is $M$-generic for forcing $\P$ in the definable cut of $M$, then the definable cut of $M[G]$ is below or the same in the ordinals as it was in $M$.

Proof. Suppose that $G\subset\P$ is $M$-generic, and we consider the forcing extension $M[G]$. We have already proved that $M_I\prec M$ is an elementary submodel. I claim that this relation lifts to the forcing extension $M_I[G]\prec M[G]$. Note first that since $\P\in M_I$ and $M_I$ is a rank initial segment of $M$, it follows that $M_I$ has all the subsets of $\P$ in $M$, and so $G$ is $M_I$-generic. So the extension $M_I[G]$ makes sense. Next, suppose that $M[G]\models\varphi(a)$ for some $a\in M_I[G]$. If $\dot a$ is a name for $a$ in $M_I$, then there is some condition $p\in G$ forcing $\varphi(\dot a)$ over $M$. Since $M_I\prec M$, this is also forced by $p$ over $M_I$, and thus $M_I[G]\models\varphi(a)$ as well, as desired. So $M_I[G]\prec M[G]$, and from this it follows that every definable ordinal of $M[G]$ is in the cut $I$. So the definable cut did not get higher. QED

But can it go down? Not if the model $M$ is definable in $M[G]$, by our earlier easy observation. Consequently,

Theorem. If $M$ is definable in $M[G]$, where $G\subset\P$ is $M$-generic for forcing $\P$ below the definable cut of $M$, then the definable cut of $M[G]$ is the same as the definable cut of $M$.

Proof. It didn’t go down, since $M$ is definable in $M[G]$; and it didn’t go up, since $\P$ was small. QED

What if $M$ is not definable in $M[G]$? Can we make the definable cut go down after small forcing? The answer is yes.

Theorem. If ZFC is consistent, then there is a model $M\models\text{ZFC}$ with a definable notion of forcing $\P$ (hence in the definable cut of $M$), such that if $G\subset\P$ is $M$-generic, then the definable cut of the forcing extension $M[G]$ is strictly shorter than the definable cut of $M[G]$.

Proof. Start with a model of $\text{ZFC}+V=L$, whose definable ordinals are bounded by a cardinal $\delta$. Let’s call it $L$, and let $I$ be the definable cut of $L$, which we assume is bounded by $\delta$. Let $M=L[G]$ be the forcing extension of $L$ obtained by performing an Easton product, adding a Cohen subset to every regular cardinal above $\delta$ in $L$. Since this forcing adds no sets below $\delta$, but adds a Cohen set at $\delta^+$, it follows that $\delta$ becomes definable in $L[G]$. In fact, since the forcing is homogeneous and definable from $\delta$, it follows that the definable ordinals of $L[G]$ are precisely the ordinals that are definable in $L$ with parameter $\delta$. These may be bounded or unbounded in $L[G]$. Now, let $\newcommand\Q{\mathbb{Q}}\Q$ be the Easton product forcing at the stages below $\delta$, and suppose that $G\subset\Q$ is $L[G]$-generic. Consider the model $L[G][H]$. Note that the forcing $\Q$ is definable in $L[G]$, since $\delta$ is definable there. This two-step forcing can be combined into one giant Easton product in $L$, the product that simply forces to add a Cohen subset to every regular cardinal. Since this version of the forcing is homogeneous and definable in $L$, it follows that the definable ordinals of $L[G][H]$ are precisely the definable ordinals of $L$, which are bounded by $I$. In summary, the definable cut of $L[G]$ is strictly above $\delta$, since $\delta$ is definable in $L[G]$, and the forcing $\Q$ has size and rank $\delta$; but the forcing extension $L[G][H]$ has definable cut $I$, which is strictly bounded by $\delta$. So the definable cut was made smaller by small forcing, as claimed. QED

This post is an account of some ideas that Alexander Block and I had noted today during the course of our mathematical investigation of another matter.

Regula Krapf, Ph.D. 2017, University of Bonn

Regula Krapf successfully defended her PhD dissertation January 12, 2017 at the University of Bonn, with a dissertation entitled, “Class forcing and second-order arithmetic.”  I was a member of the dissertation examining committee. Peter Koepke was the dissertation supervisor.

Regula Krapf

Regula Krapf, Class forcing and second-order arithmetic, dissertation 2017, University of Bonn. (Slides)

Abstract. We provide a framework in a generalization of Gödel-Bernays set theory for performing class forcing. The forcing theorem states that the forcing relation is a (definable) class in the ground model (definability lemma) and that every statement that holds in a class-generic extension is forced by a condition in the generic filter (truth lemma). We prove both positive and negative results concerning the forcing theorem. On the one hand, we show that the definability lemma for one atomic formula implies the forcing theorem for all formulae in the language of set theory to hold. Furthermore, we introduce several properties which entail the forcing theorem. On the other hand, we give both counterexamples to the definability lemma and the truth lemma. In set forcing, the forcing theorem can be proved for all forcing notions by constructing a unique Boolean completion. We show that in class forcing the existence of a Boolean completion is essentially equivalent to the forcing theorem and, moreover, Boolean completions need not be unique.

The notion of pretameness was introduced to characterize those forcing notions which preserve the axiom scheme of replacement. We present several new characterizations of pretameness in terms of the forcing theorem, the preservation of separation, the existence of nice names for sets of ordinals and several other properties. Moreover, for each of the aforementioned properties we provide a corresponding characterization of the Ord-chain condition.

Finally, we prove two equiconsistency results which compare models of ZFC (with large cardinal properties) and models of second-order arithmetic with topological regularity properties (and determinacy hypotheses). We apply our previous results on class forcing to show that many important arboreal forcing notions preserve the $\Pi^1_1$-perfect set property over models of second-order arithmetic and also give an example of a forcing notion which implies the $\Pi^1_1$-perfect set property to fail in the generic extension.

Regula has now taken up a faculty position at the University of Koblenz.

The rearrangement number

  • A. Blass, J. Brendle, W. Brian, J. D. Hamkins, M. Hardy, and P. B. Larson, “The rearrangement number.” (manuscript under review)  
    @ARTICLE{BlassBrendleBrianHamkinsHardyLarson:TheRearrangementNumber,
    author = {Andreas Blass and J\"org Brendle and Will Brian and Joel David Hamkins and Michael Hardy and Paul B. Larson},
    title = {The rearrangement number},
    journal = {},
    year = {},
    volume = {},
    number = {},
    pages = {},
    month = {},
    note = {manuscript under review},
    url = {http://jdh.hamkins.org/the-rearrangement-number},
    eprint = {1612.07830},
    archivePrefix = {arXiv},
    primaryClass = {math.LO},
    abstract = {},
    keywords = {},
    source = {},
    }

Abstract.  How many permutations of the natural numbers are needed so that every conditionally convergent series of real numbers can be rearranged to no longer converge to the same sum? We show that the minimum number of permutations needed for this purpose, which we call the rearrangement number, is uncountable, but whether it equals the cardinal of the continuum is independent of the usual axioms of
set theory. We compare the rearrangement number with several natural variants, for example one obtained by requiring the rearranged series to still converge but to a new, finite limit. We also compare the rearrangement number with several well-studied
cardinal characteristics of the continuum. We present some new forcing constructions designed to add permutations that rearrange series from the ground model in particular ways, thereby obtaining consistency results going beyond those that follow from comparisons with familiar cardinal characteristics. Finally we deal briefly with some variants concerning rearrangements by a special sort of permutations and with rearranging some divergent series to become (conditionally) convergent.

This project started with Michael Hardy’s question on MathOverflow, How many rearrangements must fail to alter the value of a sum before you conclude that none do? I had proposed in my answer that we should think of the cardinal in question as a cardinal characteristic of the continuum, the rearrangement number, since we could prove that it was uncountable and that it was the continuum under MA, and had begun to separate it from other familiar cardinal characteristics. Eventually, the research effort grew into the collaboration of this paper. What a lot of fun!

Colloquium talk at Vassar | Lecture notes talk at CUNY | the original MathOverflow question

Here are the lecture notes for an introductory talk on the topic I had given at the Vassar College Mathematics Colloquium

Recent advances in set-theoretic geology, Harvard Logic Colloquium, October 2016

I will speak at the Harvard Logic Colloquium, October 20, 2016, 4-6 pm.

harvard

Abstract. Set-theoretic geology is the study of the set-theoretic universe $V$ in the context of all its ground models and those of its forcing extensions. For example, a bedrock of the universe is a minimal ground model of it and the mantle is the intersection of all grounds. In this talk, I shall explain some recent advances, including especially the breakthrough result of Toshimichi Usuba, who proved the strong downward directed grounds hypothesis: for any set-indexed family of grounds, there is a deeper common ground below them all. This settles a large number of formerly open questions in set-theoretic geology, while also leading to new questions. It follows, for example, that the mantle is a model of ZFC and provably the largest forcing-invariant definable class. Strong downward directedness has also led to an unexpected connection between large cardinals and forcing: if there is a hyper-huge cardinal $\kappa$, then the universe indeed has a bedrock and all grounds use only $\kappa$-small forcing.

Slides

The rearrangement number: how many rearrangements of a series suffice to verify absolute convergence? Mathematics Colloquium at Penn, September 2016

This will be a talk for the Mathematics Colloquium at the University of Pennsylvania, Wednesday, September 14, 2016, 3:30 pm, tea at 3 pm, in the mathematics department.

UPenn Campus
Abstract. The well-known Riemann rearrangement theorem asserts that a series $\sum_n a_n$ is absolutely convergent if and only if every rearrangement $\sum_n a_{p(n)}$ of it is convergent, and furthermore, any conditionally convergent series can be rearranged so as to converge to any desired extended real value. But how many rearrangements $p$ suffice to test for absolute convergence in this way? The rearrangement number, a new cardinal characteristic of the continuum, is the smallest size of a family of permutations, such that whenever the convergence and value of a convergent series is invariant by all these permutations, then it is absolutely convergent. The exact value of the rearrangement number turns out to be independent of the axioms of set theory. In this talk, I shall place the rearrangement number into a discussion of cardinal characteristics of the continuum, including an elementary introduction to the continuum hypothesis and, time permitting, an account of Freiling’s axiom of symmetry.

This talk is based in part on current joint work with Jörg Brendle, Andreas Blass, Will Brian, myself, Michael Hardy and Paul Larson.

Related MathOverflow post: How many rearrangements must fail to alter the value of a sum before you conclude that none do?

Set-theoretic geology and the downward-directed grounds hypothesis, CUNY Set Theory seminar, September 2016

This will be a talk for the CUNY Set Theory Seminar, September 2 and 9, 2016.

Blender3D EarthQuarterCut.jpgIn two talks, I shall give a complete detailed account of Toshimichi Usuba’s recent proof of the strong downward-directed grounds hypothesis.  This breakthrough result answers what had been for ten years the central open question in the area of set-theoretic geology and leads immediately to numerous consequences that settle many other open questions in the area, as well as to a sharpening of some of the central concepts of set-theoretic geology, such as the fact that the mantle coincides with the generic mantle and is a model of ZFC.

Although forcing is often viewed as a method of constructing larger models extending a given model of set theory, the topic of set-theoretic geology inverts this perspective by investigating how the current set-theoretic universe $V$ might itself have arisen as a forcing extension of an inner model.  Thus, an inner model $W\subset V$ is a ground of $V$ if we can realize $V=W[G]$ as a forcing extension of $W$ by some $W$-generic filter $G\subset\mathbb{Q}\in W$.  It is a consequence of the ground-model definability theorem that every such $W$ is definable from parameters, and from this it follows that many second-order-seeming questions about the structure of grounds turn out to be first-order expressible in the language of set theory.

For example, Reitz had inquired in his dissertation whether any two grounds of $V$ must have a common deeper ground. Fuchs, myself and Reitz introduced the downward-directed grounds hypothesis DDG and the strong DDG, which asserts a positive answer, even for any set-indexed collection of grounds, and we showed that this axiom has many interesting consequences for set-theoretic geology.

Last year, Usuba proved the strong DDG, and I shall give a complete account of the proof, with some simplifications I had noticed. I shall also present Usuba’s related result that if there is a hyper-huge cardinal, then there is a bedrock model, a smallest ground. I find this to be a surprising and incredible result, as it shows that large cardinal existence axioms have consequences on the structure of grounds for the universe.

Among the consequences of Usuba’s result I shall prove are:

  1. Bedrock models are unique when they exist.
  2. The mantle is absolute by forcing.
  3. The mantle is a model of ZFC.
  4. The mantle is the same as the generic mantle.
  5. The mantle is the largest forcing-invariant class, and equal to the intersection of the generic multiverse.
  6. The inclusion relation agrees with the ground-of relation in the generic multiverse. That is, if $N\subset M$ are in the same generic multiverse, then $N$ is a ground of $M$.
  7. If ZFC is consistent, then the ZFC-provably valid downward principles of forcing are exactly S4.2.
  8. (Usuba) If there is a hyper-huge cardinal, then there is a bedrock for the universe.

Related topics in set-theoretic geology:

CUNY Set theory seminar abstract I | abstract II

The Vopěnka principle is inequivalent to but conservative over the Vopěnka scheme

  • J. D. Hamkins, “The Vopěnka principle is inequivalent to but conservative over the Vopěnka scheme.” (manuscript under review)  
    @ARTICLE{Hamkins:The-Vopenka-principle-is-inequivalent-to-but-conservative-over-the-Vopenka-scheme,
    author = {Joel David Hamkins},
    title = {The {Vop\v{e}nka} principle is inequivalent to but conservative over the {Vop\v{e}nka} scheme},
    journal = {},
    year = {},
    volume = {},
    number = {},
    pages = {},
    month = {},
    note = {manuscript under review},
    abstract = {},
    keywords = {},
    source = {},
    eprint = {1606.03778},
    archivePrefix = {arXiv},
    primaryClass = {math.LO},
    url = {http://jdh.hamkins.org/vopenka-principle-vopenka-scheme},
    }

Abstract. The Vopěnka principle, which asserts that every proper class of first-order structures in a common language admits an elementary embedding between two of its members, is not equivalent over GBC to the first-order Vopěnka scheme, which makes the Vopěnka assertion only for the first-order definable classes of structures. Nevertheless, the two Vopěnka axioms are equiconsistent and they have exactly the same first-order consequences in the language of set theory. Specifically, GBC plus the Vopěnka principle is conservative over ZFC plus the Vopěnka scheme for first-order assertions in the language of set theory.

Indras Net-03

The Vopěnka principle is the assertion that for every proper class $\mathcal{M}$ of first-order $\mathcal{L}$-structures, for a set-sized language $\mathcal{L}$, there are distinct members of the class $M,N\in\mathcal{M}$ with an elementary embedding $j:M\to N$ between them. In quantifying over classes, this principle is a single assertion in the language of second-order set theory, and it makes sense to consider the Vopěnka principle in the context of a second-order set theory, such as Godel-Bernays set theory GBC, whose language allows one to quantify over classes. In this article, GBC includes the global axiom of choice.

In contrast, the first-order Vopěnka scheme makes the Vopěnka assertion only for the first-order definable classes $\mathcal{M}$ (allowing parameters). This theory can be expressed as a scheme of first-order statements, one for each possible definition of a class, and it makes sense to consider the Vopěnka scheme in Zermelo-Frankael ZFC set theory with the axiom of choice.

Because the Vopěnka principle is a second-order assertion, it does not make sense to refer to it in the context of ZFC set theory, whose first-order language does not allow quantification over classes; one typically retreats to the Vopěnka scheme in that context. The theme of this article is to investigate the precise meta-mathematical interactions between these two treatments of Vopěnka’s idea.

Main Theorems.

  1. If ZFC and the Vopěnka scheme holds, then there is a class forcing extension, adding classes but no sets, in which GBC and the Vopěnka scheme holds, but the Vopěnka principle fails.
  2. If ZFC and the Vopěnka scheme holds, then there is a class forcing extension, adding classes but no sets, in which GBC and the Vopěnka principle holds.

It follows that the Vopěnka principle VP and the Vopěnka scheme VS are not equivalent, but they are equiconsistent and indeed, they have the same first-order consequences.

Corollaries.

  1. Over GBC, the Vopěnka principle and the Vopěnka scheme, if consistent, are not equivalent.
  2. Nevertheless, the two Vopěnka axioms are equiconsistent over GBC.
  3. Indeed, the two Vopěnka axioms have exactly the same first-order consequences in the language of set theory. Specifically, GBC plus the Vopěnka principle is conservative over ZFC plus the Vopěnka scheme for assertions in the first-order language of set theory. $$\text{GBC}+\text{VP}\vdash\phi\qquad\text{if and only if}\qquad\text{ZFC}+\text{VS}\vdash\phi$$

These results grew out of my my answer to a MathOverflow question of Mike Shulman, Can Vopěnka’s principle be violated definably?, inquiring whether there would always be a definable counterexample to the Vopěnka principle, whenever it should happen to fail. I interpret the question as asking whether the Vopěnka scheme is necessarily equivalent to the Vopěnka principle, and the answer is negative.

The proof of the main theorem involves the concept of a stretchable set $g\subset\kappa$ for an $A$-extendible cardinal, which has the property that for every cardinal $\lambda>\kappa$ and every extension $h\subset\lambda$ with $h\cap\kappa=g$, there is an elementary embedding $j:\langle V_\lambda,\in,A\cap V_\lambda\rangle\to\langle V_\theta,\in,A\cap V_\theta\rangle$ such that $j(g)\cap\lambda=h$. Thus, the set $g$ can be stretched by an $A$-extendibility embedding so as to agree with any given $h$.

Jacob Davis, PhD 2016, Carnegie Mellon University

Jacob Davis successfully defended his dissertation, “Universal Graphs at $\aleph_{\omega_1+1}$ and Set-theoretic Geology,” at Carnegie Mellon University on April 29, 2016, under the supervision of James Cummings. I was on the dissertation committee (participating via Google Hangouts), along with Ernest Schimmerling and Clinton Conley.

Jacob Davis

CMU web pageGoogle+ profile | ar$\chi$iv

The thesis consisted of two main parts. In the first half, starting from a model of ZFC with a supercompact cardinal, Jacob constructed a model in which $2^{\aleph_{\omega_1}} = 2^{\aleph_{\omega_1+1}} = \aleph_{\omega_1+3}$ and in which there is a jointly universal family of size $\aleph_{\omega_1+2}$ of graphs on $\aleph_{\omega_1+1}$.  The same technique works with any uncountable cardinal in place of $\omega_1$.  In the second half, Jacob proved a variety of results in the area of set-theoretic geology, including several instances of the downward directed grounds hypothesis, including an analysis of the chain condition of the resulting ground models.

Giorgio Audrito, PhD 2016, University of Torino

Dr. Giorgio Audrito has successfully defended his dissertation, “Generic large cardinals and absoluteness,” at the University of Torino under the supervision of Matteo Viale.

The dissertation Examing Board consisted of myself (serving as Presidente), Alessandro Andretta and Sean Cox.  The defense took place March 2, 2016.

Giorgio Audrito defense (small)

The dissertation was impressive, introducing (in joint work with Matteo Viale) the iterated resurrection axioms $\text{RA}_\alpha(\Gamma)$ for a forcing class $\Gamma$, which extend the idea of the resurrection axioms from my work with Thomas Johnstone, The resurrection axioms and uplifting cardinals, by making successive extensions of the same type, forming the resurrection game, and insisting that that the resurrection player have a winning strategy with game value $\alpha$. A similar iterative game idea underlies the $(\alpha)$-uplifting cardinals, from which the consistency of the iterated resurrection axioms can be proved. A final chapter of the dissertation (joint with Silvia Steila), develops the notion of $C$-systems of filters, generalizing the more familiar concepts of extenders and towers.

Upward closure and amalgamation in the generic multiverse of a countable model of set theory

  • J. D. Hamkins, “Upward closure and amalgamation in the generic multiverse of a countable model of set theory,” RIMS Kyôkyûroku, pp. 17-31, 2016. (also available as Newton Institute preprint ni15066)  
    @ARTICLE{Hamkins2016:UpwardClosureAndAmalgamationInTheGenericMultiverse,
    author = {Joel David Hamkins},
    title = {Upward closure and amalgamation in the generic multiverse of a countable model of set theory},
    journal = {RIMS {Ky\^oky\^uroku}},
    year = {2016},
    volume = {},
    number = {},
    pages = {17--31},
    month = {April},
    note = {also available as Newton Institute preprint ni15066},
    url = {http://jdh.hamkins.org/upward-closure-and-amalgamation-in-the-generic-multiverse},
    eprint = {1511.01074},
    archivePrefix = {arXiv},
    primaryClass = {math.LO},
    abstract = {},
    keywords = {},
    source = {},
    issn = {1880-2818},
    }

Abstract. I prove several theorems concerning upward closure and amalgamation in the generic multiverse of a countable transitive model of set theory. Every such model $W$ has forcing extensions $W[c]$ and $W[d]$ by adding a Cohen real, which cannot be amalgamated in any further extension, but some nontrivial forcing notions have all their extensions amalgamable. An increasing chain $W[G_0]\subseteq W[G_1]\subseteq\cdots$ has an upper bound $W[H]$ if and only if the forcing had uniformly bounded essential size in $W$. Every chain $W\subseteq W[c_0]\subseteq W[c_1]\subseteq \cdots$ of extensions adding Cohen reals is bounded above by $W[d]$ for some $W$-generic Cohen real $d$.

This article is based upon I talk I gave at the conference on Recent Developments in Axiomatic Set Theory at the Research Institute for Mathematical Sciences (RIMS) at Kyoto University, Japan in September, 2015, and I am extremely grateful to my Japanese hosts, especially Toshimichi Usuba, for supporting my research visit there and also at the CTFM conference at Tokyo Institute of Technology just preceding it. This article includes material adapted from section section 2 of Set-theoretic geology, joint with G. Fuchs, myself and J. Reitz, and also includes a theorem that was proved in a series of conversations I had with Giorgio Venturi at the Young Set Theory Workshop 2011 in Bonn and continuing at the London 2011 summer school on set theory at Birkbeck University London.

The rearrangement number: how many rearrangements of a series suffice to verify absolute convergence? Vassar Math Colloquium, November 2015

This will be a talk for the Mathematics Colloquium at Vassar College, November 10, 2015, tea at 4:00 pm, talk at 4:15 pm, Rockefeller Hall 310

Abstract. The Riemann rearrangement theorem asserts that a series $\sum_n a_n$ is absolutely convergent if and only if every rearrangement $\sum_n a_{p(n)}$ of it is convergent, and furthermore, any conditionally convergent series can be rearranged so as to converge to any desired extended real value. How many rearrangements $p$ suffice to test for absolute convergence in this way? The rearrangement number, a new cardinal characteristic of the continuum introduced just recently, is the smallest size of a family of permutations, such that whenever the convergence and value of a convergent series is invariant by all these permutations, then it is absolutely convergent. The exact value of the rearrangement number turns out to be independent of the axioms of set theory. In this talk, I shall place the rearrangement number into a discussion of cardinal characteristics of the continuum, including an elementary introduction to the continuum hypothesis and an account of Freiling’s axiom of symmetry.

This talk is based in part on current joint work with Andreas Blass, Will Brian, myself, Michael Hardy and Paul Larson.

My notes are available here:

The rearrangement number, CUNY set theory seminar, November 2015

This will be a talk for the CUNY Set Theory Seminar on November 6, 2015.

The Riemann rearrangement theorem states that a convergent real series $\sum_n a_n$ is absolutely convergent if and only if the value of the sum is invariant under all rearrangements $\sum_n a_{p(n)}$ by any permutation $p$ on the natural numbers; furthermore, if the series is merely conditionally convergent, then one may find rearrangements for which the new sum $\sum_n a_{p(n)}$ has any desired (extended) real value or which becomes non-convergent.  In recent joint work with Andreas Blass, Will Brian, myself, Michael Hardy and Paul Larson, based on an exchange in reply to a Hardy’s MathOverflow question on the topic, we investigate the minimal size of a family of permutations that can be used in this manner to test an arbitrary convergent series for absolute convergence.

Specifically, we define the rearrangement number $\newcommand\rr{\mathfrak{rr}}\rr$ (“double-r”), a new cardinal characteristic of the continuum, to be the smallest cardinality of a set $P$ of permutations of the natural numbers, such that if a convergent real series $\sum_n a_n$ remains convergent and with the same sum after all rearrangements $\sum_n a_{p(n)}$ by a permutation $p\in P$, then it is absolutely convergent. The corresponding rearrangement number for sums, denoted $\newcommand\rrsum{\rr_{\scriptscriptstyle\Sigma}}
\rrsum$, is the smallest cardinality of a family $P$ of permutations, such that if a series $\sum_n a_n$ is conditionally convergent, then there is a rearrangement $\sum_n a_{p(n)}$, by some permutation $p \in P$, which converges to a different sum. We investigate the basic properties of these numbers, and explore their relations with other cardinal characteristics of the continuum. Our main results are that $\mathfrak{b}\leq\rr\leq\mathop{\bf non}(\mathcal{M})$, that $\mathfrak{d}\leq \rrsum$, and that $\mathfrak{b}<\rr$ is relatively consistent.

MathOverflow question | CUNY Set Theory Seminar

Being HOD-of-a-set is invariant throughout the generic multiverse

Iowa State Capitol - Law Library _ Flickr - Photo Sharing!$\newcommand\HOD{\text{HOD}}$The axiom $V=\HOD$, introduced by Gödel, asserts that every set is ordinal definable. This axiom has a subtler foundational aspect than might at first be expected. The reason is that the general concept of “object $x$ is definable using parameter $p$” is not in general first-order expressible in set theory; it is of course a second-order property, which makes sense only relative to a truth predicate, and by Tarski’s theorem, we can have no first-order definable truth predicate. Thus, the phrase “definable using ordinal parameters” is not directly meaningful in the first-order language of set theory without further qualification or explanation. Fortunately, however, it is a remarkable fact that when we allow definitions to use arbitrary ordinal parameters, as we do with $\HOD$, then we can in fact make such qualifications in such a way that the axiom becomes first-order expressible in set theory. Specifically, we say officially that $V=\HOD$ holds, if for every set $x$, there is an ordinal $\theta$ with $x\in V_\theta$, for which which $x$ is definable by some formula $\psi(x)$ in the structure $\langle V_\theta,{\in}\rangle$ using ordinal parameters. Since $V_\theta$ is a set, we may freely make reference to first-order truth in $V_\theta$ without requiring any truth predicate in $V$. Certainly any such $x$ as this is also ordinal-definable in $V$, since we may use $\theta$ and the Gödel-code of $\psi$ also as parameters, and note that $x$ is the unique object such that it is in $V_\theta$ and satisfies $\psi$ in $V_\theta$. (Note that inside an $\omega$-nonstandard model of set theory, we may really need to use $\psi$ as a parameter, since it may be nonstandard, and $x$ may not be definable in $V_\theta$ using a meta-theoretically standard natural number; but fortunately, the Gödel code of a formula is an integer, which is still an ordinal, and this issue is the key to the issue.) Conversely, if $x$ is definable in $V$ using formula $\varphi(x,\vec\alpha)$ with ordinal parameters $\vec\alpha$, then it follows by the reflection theorem that $x$ is defined by $\varphi(x,\vec\alpha)$ inside some $V_\theta$. So this formulation of $V=HOD$ is expressible and exactly captures the desired second-order property that every set is ordinal-definable.

Consider next the axiom $V=\HOD(b)$, asserting that every set is definable from ordinal parameters and parameter $b$. Officially, as before, $V=\HOD(b)$ asserts that for every $x$, there is an ordinal $\theta$, formula $\psi$ and ordinals $\vec \alpha<\theta$, such that $x$ is the unique object in $V_\theta$ for which $\langle V_\theta,{\in}\rangle\models\psi(x,\vec\alpha,b)$, and the reflection argument shows again that this way of defining the axiom exactly captures the intended idea.

The axiom I actually want to focus on is $\exists b\,\left( V=\HOD(b)\right)$, asserting that the universe is $\HOD$ of a set. (I assume ZFC in the background theory.) It turns out that this axiom is constant throughout the generic multiverse.

Theorem. The assertion $\exists b\, (V=\HOD(b))$ is forcing invariant.

  • If it holds in $V$, then it continues to hold in every set forcing extension of $V$.
  • If it holds in $V$, then it holds in every ground of $V$.

Thus, the truth of this axiom is invariant throughout the generic multiverse.

Proof. Suppose that $\text{ZFC}+V=\HOD(b)$, and $V[G]$ is a forcing extension of $V$ by generic filter $G\subset\mathbb{P}\in V$. By the ground-model definability theorem, it follows that $V$ is definable in $V[G]$ from parameter $P(\mathbb{P})^V$. Thus, using this parameter, as well as $b$ and additional ordinal parameters, we can define in $V[G]$ any particular object in $V$. Since this includes all the $\mathbb{P}$-names used to form $V[G]$, it follows that $V[G]=\HOD(b,P(\mathbb{P})^V,G)$, and so $V[G]$ is $\HOD$ of a set, as desired.

Conversely, suppose that $W$ is a ground of $V$, so that $V=W[G]$ for some $W$-generic filter $G\subset\mathbb{P}\in W$, and $V=\HOD(b)$ for some set $b$. Let $\dot b$ be a name for which $\dot b_G=b$. Every object $x\in W$ is definable in $W[G]$ from $b$ and ordinal parameters $\vec\alpha$, so there is some formula $\psi$ for which $x$ is unique such that $\psi(x,b,\vec\alpha)$. Thus, there is some condition $p\in\mathbb{P}$ such that $x$ is unique such that $p\Vdash\psi(\check x,\dot b,\check{\vec\alpha})$. If $\langle p_\beta\mid\beta<|\mathbb{P}|\rangle$ is a fixed enumeration of $\mathbb{P}$ in $W$, then $p=p_\beta$ for some ordinal $\beta$, and we may therefore define $x$ in $W$ using ordinal parameters, along with $\dot b$ and the fixed enumeration of $\mathbb{P}$. So $W$ thinks the universe is $\HOD$ of a set, as desired.

Since the generic multiverse is obtained by iteratively moving to forcing extensions to grounds, and each such movement preserves the axiom, it follows that $\exists b\, (V=\HOD(b))$ is constant throughout the generic multiverse. QED

Theorem. If $V=\HOD(b)$, then there is a forcing extension $V[G]$ in which $V=\HOD$ holds.

Proof. We are working in ZFC. Suppose that $V=\HOD(b)$. We may assume $b$ is a set of ordinals, since such sets can code any given set. Consider the following forcing iteration: first add a Cohen real $c$, and then perform forcing $G$ that codes $c$, $P(\omega)^V$ and $b$ into the GCH pattern at uncountable cardinals, and then perform self-encoding forcing $H$ above that coding, coding also $G$ (see my paper on Set-theoretic geology for further details on self-encoding forcing). In the final model $V[c][G][H]$, therefore, the objects $c$, $b$, $P(\omega)^V$, $G$ and $H$ are all definable without parameters. Since $V\subset V[c][G][H]$ has a closure point at $\omega$, it satisfies the $\omega_1$-approximation and cover properties, and therefore the class $V$ is definable in $V[c][G][H]$ using $P(\omega)^V$ as a parameter. Since this parameter is itself definable without parameters, it follows that $V$ is parameter-free definable in $V[c][G][H]$. Since $b$ is also definable there, it follows that every element of $\HOD(b)^V=V$ is ordinal-definable in $V[c][G][H]$. And since $c$, $G$ and $H$ are also definable without parameters, we have $V[c][G][H]\models V=\HOD$, as desired. QED

Corollary. The following are equivalent.

  1. The universe is $\HOD$ of a set: $\exists b\, (V=\HOD(b))$.
  2. Somewhere in the generic multiverse, the universe is $\HOD$ of a set.
  3. Somewhere in the generic multiverse, the axiom $V=\HOD$ holds.
  4. The axiom $V=\HOD$ is forceable.

Proof. This is an immediate consequence of the previous theorems. $1\to 4\to 3\to 2\to 1$. QED

Corollary. The axiom $V=\HOD$, if true, even if true anywhere in the generic multiverse, is a switch.

Proof. A switch is a statement such that both it and its negation are necessarily possible by forcing; that is, in every set forcing extension, one can force the statement to be true and also force it to be false. We can always force $V=\HOD$ to fail, simply by adding a Cohen real. If $V=\HOD$ is true, then by the first theorem, every forcing extension has $V=\HOD(b)$ for some $b$, in which case $V=\HOD$ remains forceable, by the second theorem. QED

Upward countable closure in the generic multiverse of forcing to add a Cohen real

I’d like to discuss my theorem that the collection of models $M[c]$ obtained by adding an $M$-generic Cohen real $c$ over a fixed countable transitive model of set theory $M$ is upwardly countably closed, in the sense that every increasing countable chain has an upper bound.

I proved this theorem back in 2011, while at the Young Set Theory Workshop in Bonn and continuing at the London summer school on set theory, in a series of conversations with Giorgio Venturi. The argument has recently come up again in various discussions, and so let me give an account of it.

We consider the collection of all forcing extensions of a fixed countable transitive model $M$ of ZFC by the forcing to add a Cohen real, models of the form $M[c]$, and consider the question of whether every countable increasing chain of these models has an upper bound. The answer is yes!  (Actually, Giorgio wants to undertake forcing constructions by forcing over this collection of models to add a generic upward directed system of models; it follows from this theorem that this forcing is countably closed.) This theorem fits into the theme of my earlier post, Upward closure in the toy multiverse of all countable models of set theory, where similar theorems are proved, but not this one exactly.

Theorem. For any countable transitive model $M\models\text{ZFC}$, the collection of all forcing extensions $M[c]$ by adding an $M$-generic Cohen real is upward-countably closed. That is, for any countable tower of such forcing extensions
$$M[c_0]\subset M[c_1]\subset\cdots\subset M[c_n]\subset\cdots,$$
we may find an $M$-generic Cohen real $d$ such that $M[c_n]\subset M[d]$ for every natural number $n$.

Proof. $\newcommand\Add{\text{Add}}$Suppose that we have such a tower of forcing extensions $M[c_0]\subset M[c_1]\subset\cdots$, and so on. Note that if $M[b]\subset M[c]$ for $M$-generic Cohen reals $b$ and $c$, then $M[c]$ is a forcing extension of $M[b]$ by a quotient of the Cohen-real forcing. But since the Cohen forcing itself has a countable dense set, it follows that all such quotients also have a countable dense set, and so $M[c]$ is actually $M[b][b_1]$ for some $M[b]$-generic Cohen real $b_1$. Thus, we may view the tower as having the form:
$$M[b_0]\subset M[b_0\times b_1]\subset\cdots\subset M[b_0\times b_1\times\cdots\times b_n]\subset\cdots,$$
where now it follows that any finite collection of the reals $b_i$ are mutually $M$-generic.

Of course, we cannot expect in general that the real $\langle b_n\mid n<\omega\rangle$ is $M$-generic for $\Add(\omega,\omega)$, since this real may be very badly behaved. For example, the sequence of first-bits of the $b_n$’s may code a very naughty real $z$, which cannot be added by forcing over $M$ at all. So in general, we cannot allow that this sequence is added to the limit model $M[d]$. (See further discussion in my post Upward closure in the toy multiverse of all countable models of set theory.)

We shall instead undertake a construction by making finitely many changes to each real $b_n$, resulting in a real $d_n$, in such a way that the resulting combined real $d=\oplus_n d_n$ is $M$-generic for the forcing to add $\omega$-many Cohen reals, which is of course isomorphic to adding just one. To do this, let’s get a little more clear with our notation. We regard each $b_n$ as an element of Cantor space $2^\omega$, that is, an infinite binary sequence, and the corresponding filter associated with this real is the collection of finite initial segments of $b_n$, which will be an $M$-generic filter through the partial order of finite binary sequences $2^{<\omega}$, which is one of the standard isomorphic copies of Cohen forcing. We will think of $d$ as a binary function on the plane $d:\omega\times\omega\to 2$, where the $n^{th}$ slice $d_n$ is the corresponding function $\omega\to 2$ obtained by fixing the first coordinate to be $n$.

Now, we enumerate the countably many open dense subsets for the forcing to add a Cohen real $\omega\times\omega\to 2$ as $D_0$, $D_1$, and so on. There are only countably many such dense sets, because $M$ is countable. Now, we construct $d$ in stages. Before stage $n$, we will have completely specified $d_k$ for $k<n$, and we also may be committed to a finite condition $p_{n-1}$ in the forcing to add $\omega$ many Cohen reals. We consider the dense set $D_n$. We may factor $\Add(\omega,\omega)$ as $\Add(\omega,n)\times\Add(\omega,[n,\omega))$. Since $d_0\times\cdots\times d_{n-1}$ is actually $M$-generic (since these are finite modifications of the corresponding $b_k$’s, which are mutually $M$-generic, it follows that there is some finite extension of our condition $p_{n-1}$ to a condition $p_n\in D_n$, which is compatible with $d_0\times\cdots\times d_{n-1}$. Let $d_n$ be the same as $b_n$, except finitely modified to be compatible with $p_n$. In this way, our final real $\oplus_n d_n$ will contain all the conditions $p_n$, and therefore be $M$-generic for $\Add(\omega,\omega)$, yet every $b_n$ will differ only finitely from $d_n$ and hence be an element of $M[d]$. So we have $M[b_0]\cdots[b_n]\subset M[d]$, and we have found our upper bound. QED

Notice that the real $d$ we construct is not only $M$-generic, but also $M[c_n]$-generic for every $n$.

My related post, Upward closure in the toy multiverse of all countable models of set theory, which is based on material in my paper Set-theoretic geology, discusses some similar results.