How to find pointwise definable and Leibnizian extensions of models of arithmetic and set theory, Oxford Logic Seminar, May 2023

This will be a talk (in person) for the Logic Seminar of the Mathematics Institute of the Univerisity of Oxford, May 18, 2023 5pm, Wiles Building L3.

By Alain Goriely - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=29752669

Abstract:  I shall present a new flexible method showing that every countable model of PA admits a pointwise definable end-extension, one in which every point is definable without parameters. Also, any model of PA of size at most continuum admits an extension that is Leibnizian, meaning that any two distinct points are separated by some expressible property. Similar results hold in set theory, where one can also achieve V=L in the extension, or indeed any suitable theory holding in an inner model of the original model.

Varieties of potentialism, Oslo, April 2023

This will be an online talk for the Infinity & Intentionality project of Øystein Linnebo in Oslo, 25 April 2023. Zoom link available from the organizers.

Abstract: I shall survey the surprisingly enormous variety of potentialist conceptions, even in the case of arithmetic potentialism, spanning a spectrum from linear inevitabilism and other convergent potentialist conceptions to more radical nonamalgamable branching-possibility potentialist conceptions. Underlying the universe-fragment framework for potentialism, one finds a natural modal vocabulary capable of expressing fine distinctions between the various potentialist ideas, as well as sweeping potentialist principles. Similarly diverse conceptions of ultrafinitism grow out of the analysis. Ultimately, the various convergent potentialist conceptions, I shall argue, are implicitly actualist, reducing to and interpreting actualism via the potentialist translation, whereas the radical-branching nonamalgamable potentialist conception admits no such reduction. 

Pointwise definable and Leibnizian models of arithmetic and set theory, realized in end extensions of a given model, Notre Dame Logic Seminar, October 2022

This will be a talk for the Notre Dame logic seminar, 11 October 2022, 2pm in Hales-Healey Hall.

Abstract.  I shall present very new results on pointwise definable and Leibnizian end-extensions of models of arithmetic and set theory. Using the universal algorithm, I shall present a new flexible method showing that every countable model of PA admits a pointwise definable $\Sigma_n$-elementary end-extension. Also, any model of PA of size at most continuum admits an extension that is Leibnizian, meaning that any two distinct points are separated by some expressible property. Similar results hold in set theory, where one can also achieve V=L in the extension, or indeed any suitable theory holding in an inner model of the original model.

Set-theoretic and arithmetic potentialism: the state of current developments, CACML 2020

This will be a plenary talk for the Chinese Annual Conference on Mathematical Logic (CACML 2020), held online 13-15 November 2020. My talk will be held 14 November 17:00 Beijing time (9 am GMT).

Potentialist perspectives

Abstract. Recent years have seen a flurry of mathematical activity in set-theoretic and arithmetic potentialism, in which we investigate a collection of models under various natural extension concepts. These potentialist systems enable a modal perspective—a statement is possible in a model, if it is true in some extension, and necessary, if it is true in all extensions. We consider the models of ZFC set theory, for example, with respect to submodel extensions, rank-extensions, forcing extensions and others, and these various extension concepts exhibit different modal validities. In this talk, I shall describe the state of current developments, including the most recent tools and results.

Parallels in universality between the universal algorithm and the universal finite set, Oxford Math Logic Seminar, October 2018

This will be a talk for the Logic Seminar in Oxford at the Mathematics Institute in the Andrew Wiles Building on October 9, 2018, at 4:00 pm, with tea at 3:30.

Abstract. The universal algorithm is a Turing machine program $e$ that can in principle enumerate any finite sequence of numbers, if run in the right model of PA, and furthermore, can always enumerate any desired extension of that sequence in a suitable end-extension of that model. The universal finite set is a set-theoretic analogue, a locally verifiable definition that can in principle define any finite set, in the right model of set theory, and can always define any desired finite extension of that set in a suitable top-extension of that model. Recent work has uncovered a $\Sigma_1$-definable version that works with respect to end-extensions. I shall give an account of all three results, which have a parallel form, and describe applications to the model theory of arithmetic and set theory.

Slides