Modal model theory

Let me introduce to you the topic of modal model theory, injecting some ideas from modal logic into the traditional subject of model theory in mathematical logic.

For example, we may consider the class of all models of some first-order theory, such as the class of all graphs, or the class of all groups, or all fields or what have you. In general, we have $\newcommand\Mod{\text{Mod}}\Mod(T)$, where $T$ is a first-order theory in some language $L$.

We may consider $\Mod(T)$ as a potentialist system, a Kripke model of possible worlds, where each model accesses the larger models, of which it is a submodel. So $\newcommand\possible{\Diamond}\possible\varphi$ is true at a model $M$, if there is a larger model $N$ in which $\varphi$ holds, and $\newcommand\necessary{\Box}\necessary\varphi$ is true at $M$, if $\varphi$ holds in all larger models.

In this way, we enlarge the language $L$ to include these modal operators. Let $\possible(L)$ be the language obtained by closing $L$ under the modal operators and Boolean connectives; and let $L^\possible$ also close under quantification. The difference is whether a modal operator falls under the scope of a quantifier.

Recently, in a collaborative project with Wojciech Aleksander Wołoszyn, we made some progress, which I’d like to explain. (We also have many further results, concerning the potentialist validities of various natural instances of $\Mod(T)$, but those will wait for another post.)

Theorem. If models $M$ and $N$ are elementarily equivalent, that is, if they have the same theory in the language of $L$, then they also have the same theory in the modal language $\possible(L)$.

Proof. We show that whenever $M\equiv N$ in the language of $L$, then $M\models\varphi\iff N\models\varphi$ for sentences $\varphi$ in the modal language $\possible(L)$, by induction on $\varphi$.

Of course, by assumption the statement is true for sentences $\varphi$ in the base language $L$. And the property is clearly preserved by Boolean combinations. What remains is the modal case. Suppose that $M\equiv N$ and $M\models\possible\varphi$. So there is some extension model $M\subset W\models\varphi$.

Since $M\equiv N$, it follows by the Keisler-Shelah theorem that $M$ and $N$ have isomorphic ultrapowers $\prod_\mu M\cong\prod_\mu N$, for some ultrafilter $\mu$. It is easy to see that isomorphic structures satisfy exactly the same modal assertions in the class of all models of a theory. Since $M\subset W$, it follows that the ultrapower of $M$ is extended to (a copy of) the ultrapower of $W$, and so $\prod_\mu M\models\possible\varphi$, and therefore also $\prod_\mu N\models\possible\varphi$. From this, since $N$ embeds into its ultrapower $\prod_\mu N$, it follows also that $N\models\possible\varphi$, as desired. $\Box$

Corollary. If one model elementarily embeds into another $M\prec N$, in the language $L$ of these structures, then this embedding is also elementary in the language $\possible(L)$.

Proof. To say $M\prec N$ in language $L$ is the same as saying that $M\equiv N$ in the language $L_M$, where we have added constants for every element of $M$, and interpreted these constants in $N$ via the embedding. Thus, by the theorem, it follows that $M\equiv N$ in the language $\possible(L_M)$, as desired. $\Box$

For example, every model $M$ is elementarily embedding into its ultrapowers $\prod_\mu M$, in the language $\possible(L)$.

We’d like to point out next that these results do not extend to elementary equivalence in the full modal language $L^\possible$.

For a counterexample, let’s work in the class of all simple graphs, in the language with a binary predicate for the edge relation. (We’ll have no parallel edges, and no self-edges.) So the accessibility relation here is the induced subgraph relation.

Lemma. The 2-colorability of a graph is expressible in $\possible(L)$. Similarly for $k$-colorability for any finite $k$.

Proof. A graph is 2-colorable if we can partition its vertices into two sets, such that a vertex is in one set if and only if all its neighbors are in the other set. This can be effectively coded by adding two new vertices, call them red and blue, such that every node (other than red and blue) is connected to exactly one of these two points, and a vertex is connected to red if and only if all its neighbors are connected to blue, and vice versa. If the graph is $2$-colorable, then there is an extension realizing this statement, and if there is an extension realizing the statement, then (even if more than two points were added) the original graph must be $2$-colorable. $\Box$

A slightly more refined observation is that for any vertex $x$ in a graph, we can express the assertion, “the component of $x$ is $2$-colorable” by a formula in the language $\possible(L)$. We simply make the same kind of assertion, but drop the requirement that every node gets a color, and insist only that $x$ gets a color and the coloring extends from a node to any neighbor of the node, thereby ensuring the full connected component will be colored.

Theorem. There are two graphs that are elementary equivalent in the language $L$ of graph theory, and hence also in the language $\possible(L)$, but they are not elementarily equivalent in the full modal language $L^\possible$.

Proof. Let $M$ be a graph consisting of disjoint copies of a 3-cycle, a 5-cycle, a 7-cycle, and so on, with one copy of every odd-length cycle. Let $M^*$ be an ultrapower of $M$ by a nonprincipal ultrafilter.

Thus, $M^*$ will continue to have one 3-cycle, one 5-cycle, one 7-cycle and on on, for all the finite odd-length cycles, but then $M^*$ will have what it thinks are non-standard odd-length cycles, except that it cannot formulate the concept of “odd”. What it actually has are a bunch of $\mathbb{Z}$-chains.

In particular, $M^*$ thinks that there is an $x$ whose component is $2$-colorable, since a $\mathbb{Z}$-chain is $2$-colorable.

But $M$ does not think that there is an $x$ whose component is $2$-colorable, because an odd-length finite cycle is not $2$-colorable. $\Box$.

Since we used an ultrapower, the same example also shows that the corollary above does not generalize to the full modal language. That is, we have $M$ embedding elementarily into its ultrapower $M^*$, but it is not elementary in the language $L^\possible$.

Let us finally notice that the Łoś theorem for ultraproducts fails even in the weaker modal language $\possible(L)$.

Theorem. There are models $M_i$ for $i\in\mathbb{N}$ and a sentence $\varphi$ in the language of these models, such that every nonprincipal ultraproduct $\prod_\mu M_i$ satisfies $\possible\varphi$, but no $M_i$ satisfies $\possible\varphi$. .

Proof. In the class of all graphs, using the language of graph theory, let the $M_i$ be all the odd-length cycles. The ultraproduct $\prod_\mu M_i$ consists entirely of $\mathbb{Z}$-chains. In particular, the ultraproduct graph is $2$-colorable, but none of the $M_i$ are $2$-colorable. $\Box$

Alan Turing’s theory of computation, Oxford and Cambridge Club, June 2019

I shall speak for the Oxford and Cambridge Club, in a joint event hosted by Maths and Science Group and the Military History Group, an evening (6 June 2019) with dinner and talks on the theme of the Enigma and Code breaking. 

Oxford and Cambridge Club

Abstract: I shall describe Alan Turing’s transformative philosophical analysis of the nature of computation, including his argument that some mathematical questions must inevitably remain beyond our computational capacity to answer.

The talk will highlight ideas from Alan Turing’s phenomenal 1936 paper on computable numbers:

Computational self-reference and the universal algorithm, Queen Mary University of London, June 2019

This will be a talk for the Theory Seminar for the theory research group in Theoretical Computer Science at Queen Mary University of London. The talk will be held 4 June 2019 1:00 pm, ITL first floor.

Abstract. Curious, often paradoxical instances of self-reference inhabit deep parts of computability theory, from the intriguing Quine programs and Ouroboros programs to more profound features of the Gödel phenomenon. In this talk, I shall give an elementary account of the universal algorithm, showing how the capacity for self-reference in arithmetic gives rise to a Turing machine program $e$, which provably enumerates a finite set of numbers, but which can in principle enumerate any finite set of numbers, when it is run in a suitable model of arithmetic. In this sense, every function becomes computable, computed all by the same universal program, if only it is run in the right world. Furthermore, the universal algorithm can successively enumerate any desired extension of the sequence, when run in a suitable top-extension of the universe. An analogous result holds in set theory, where Woodin and I have provided a universal locally definable finite set, which can in principle be any finite set, in the right universe, and which can furthermore be successively extended to become any desired finite superset of that set in a suitable top-extension of that universe.

Representing Ordinal Numbers with Arithmetically Interesting Sets of Real Numbers

  • D. D. Blair, J. D. Hamkins, and K. O’Bryant, “Representing Ordinal Numbers with Arithmetically Interesting Sets of Real Numbers,” mathematics arXiv, 2019. (under review)  
    @ARTICLE{BlairHamkinsOBryant:Representing-ordinal-numbers-with-arithmetically-interesting-sets-of-real-numbers,
    author = {D. Dakota Blair and Joel David Hamkins and Kevin O'Bryant},
    title = {Representing Ordinal Numbers with Arithmetically Interesting Sets of Real Numbers},
    journal = {mathematics arXiv},
    year = {2019},
    volume = {},
    number = {},
    pages = {},
    month = {},
    note = {under review},
    abstract = {},
    keywords = {under-review},
    source = {},
    doi = {},
    url = {https://wp.me/p5M0LV-1Tg},
    eprint = {1905.13123},
    archivePrefix = {arXiv},
    primaryClass = {math.LO},
    }

Abstract. For a real number $x$ and set of natural numbers $A$, define $x∗A = \{xa \mod 1 \mid a \in A\}\subseteq [0,1)$. We consider relationships between $x$, $A$, and the order-type of $x∗A$. For example, for every irrational $x$ and order-type $\alpha$, there is an $A$ with $x ∗ A \simeq\alpha$, but if $\alpha$ is an ordinal, then $A$ must be a thin set. If, however, $A$ is restricted to be a subset of the powers of $2$, then not every order type is possible, although arbitrarily large countable well orders arise.

The connect-infinity game!

I saw the following image on Twitter and Reddit, an image suggesting an entire class of infinitary analogues of the game Connect-Four. What fun! Let’s figure it out!

I’m not sure to whom the image or the idea is due. Please comment if you have information. (See comments below for current information.)

The rules will naturally generalize those in Connect-Four. Namely, starting from an empty board, the players take turns placing their coins into the $\omega\times 4$ grid. When a coin is placed in a column, it falls down to occupy the lowest available cell. Let us assume for now that the game proceeds for $\omega$ many moves, whether or not the board becomes full, and the goal is to make a connected sequence in a row of $\omega$ many coins of your color (you don’t have to fill the whole row, but rather a connected infinite segment of it suffices). A draw occurs when neither or both players achieve their goals.

In the $\omega\times 6$ version of the game that is shown, and indeed in the $\omega\times n$ version for any finite $n$, I claim that neither player can force a win; both players have drawing strategies.

Theorem. In the game Connect-$\omega$ on a board of size $\omega\times n$, where $n$ is finite, neither player has a winning strategy; both players have drawing strategies.

Proof. For a concrete way to see this, observe that either player can ensure that there are infinitely many of their coins on the bottom row: they simply place a coin into some far-out empty column. This blocks a win for the opponent on the bottom row. Next, observe that neither player can afford to follow the strategy of always answering those moves on top, since this would lead to a draw, with a mostly empty board. Thus, it must happen that infinitely often we are able to place a coin onto the second row. This blocks a win for the opponent on the second row. And so on. In this way, either players can achieve infinitely many of their coins on each row, thereby blocking any row as a win for their opponent. So both players have drawing strategies. $\Box$

Let me point out that on a board of size $\omega\times n$, where $n$ is odd, we can also make this conclusion by a strategy-stealing argument. Specifically, I argue first that the first player can have no winning strategy. Suppose $\sigma$ is a winning strategy for the first player on the $\omega\times n$ board, with $n$ odd, and let us describe a strategy for the second player. After the first move, the second player mentally ignores a finite left-initial segment of the playing board, which includes that first move and with a odd number of cells altogether in it (and hence an even number of empty cells remaining); the second player will now aim to win on the now-empty right-side of the board, by playing as though playing first in a new game, using strategy $\sigma$. If the first player should ever happen to play on the ignored left side of the board, then the second player can answer somewhere there (it doesn’t matter where). In this way, the second player plays with $\sigma$ as though he is the first player, and so $\sigma$ cannot be winning for the first player, since in this way the second player would win in this stolen manner.

Similarly, let us argue by strategy-stealing that the second player cannot have a winning strategy on the board $\omega\times n$ for odd finite $n$. Suppose that $\tau$ is a winning strategy for the second player on such a board. Let the first player always play at first in the left-most column. Because $n$ is odd, the second player will eventually have to play first in the second or later columns, leaving an even number of empty cells in the first column (perhaps zero). At this point, the first player can play as though he was the second player on the right-side board containing only that fresh move. If the opponent plays again to the left, then our player can also play in that region (since there were an even number of empty cells). Thus, the first player can steal the strategy $\tau$, and so it cannot be winning for the second player.

I am unsure about how to implement the strategy stealing arguments when $n$ is even. I shall give this more thought. In any case, the theorem for this case was already proved directly by the initial concrete argument, and in this sense we do not actually need the strategy stealing argument for this case.

Meanwhile, it is natural also to consider the $n\times\omega$ version of the game, which has only finitely many columns, each infinite. The players aim to get a sequence of $\omega$-many coins in a column. This is clearly impossible, as the opponent can prevent a win by always playing atop the most recent move. Thus:

Theorem. In the game Connect-$\omega$ on a board of size $n\times\omega$, where $n$ is finite, neither player has a winning strategy; both players have drawing strategies.

Perhaps the most natural variation of the game, however, occurs with a board of size $\omega\times\omega$. In this version, like the original Connect-Four, a player can win by either making a connected row of $\omega$ many coins, or a connected column or a connected diagonal of $\omega$ many coins. Note that we orient the $\omega$ size column upwards, so that there is no top cell, but rather, one plays by selecting a not-yet-filled column and then occupying the lowest available cell in that column.

Theorem. In the game Connect-$\omega$ on a board of size $\omega\times\omega$, neither player has a winning strategy. Both players have drawing strategies.

Proof. Consider the strategy-stealing arguments. If the first player has a winning strategy $\sigma$, then let us describe a strategy for the second player. After the first move, the second player will ignore finitely many columns at the left, including that first actual move, aiming to play on the empty right-side of the board as though the first player using stolen strategy $\sigma$ (but with colors swapped). This will work fine, as long as the first player also plays on that part of the board. Whenever the first player plays on the ignored left-most part, simply respond by playing atop. This prevents a win in that part of the part, and so the second player will win on the right-side by pretending to be first there. So there can be no such winning strategy $\sigma$ for the first player.

If the second player has a winning strategy $\tau$, then as before let the first player always play in the first column, until $\tau$ directs the second player to play in another column, which must eventually happen if $\tau$ is winning. At that moment, the first player can pretend to be second on the subboard omitting the first column. So $\tau$ cannot have been winning after all for the second player. $\Box$

In the analysis above, I was considering the game that proceeded in time $\omega$, with $\omega$ many moves. But such a play of the game may not actually have filled the board completely. So it is natural to consider a version of the game where the players continue to play transfinitely, if the board is not yet full.

So let us consider now the transfinite-play version of the game, where play proceeds transfinitely through the ordinals, until either the board is filled or one of the players has achieved the winning goal. Let us assume that the first player also plays first at limit stages, at $\omega$ and $\omega\cdot 2$ and $\omega^2$, and so on, if game play should happen to proceed for that long.

The concrete arguments that I gave above continue to work for the transfinite-play game on the boards of size $\omega\times n$ and $n\times\omega$.

Theorem. In the transfinite-play version of Connect-$\omega$ on boards of size $\omega\times n$ or $n\times\omega$, where $n$ is finite, neither player can have a winning strategy. Indeed, both players can force a draw while also filling the board in $\omega$ moves.

Proof. It is clear that on the $n\times\omega$ board, either player can force each column to have infinitely many coins of their color, and this fills the board, while also preventing a win for the opponent, as desired.

On the $\omega\times n$ board, consider a variation of the strategy I described above. I shall simply always play in the first available empty column, thereby placing my coin on the bottom row, until the opponent also plays in a fresh column. At that moment, I shall play atop his coin, thereby placing another coin in the second row; immediately after this, I also play subsequently in the left-most available column (so as to force the board to be filled). I then continue playing in the bottom row, until the opponent also does, which she must, and then I can add another coin to the second row and so on. By always playing the first-available second-row slot with all-empty second rows to the right, I can ensure that the opponent will eventually also make a second-row play (since otherwise I will have a winning condition on the second row), and at such a moment, I can also make a third-row play. By continuing in this way, I am able to place infinitely many coins on each row, while also forcing that the board becomes filled. $\Box$

Unfortunately, the transfinite-play game seems to break the strategy-stealing arguments, since the play is not symmetric for the players, as the first player plays first at limit stages.

Nevertheless, following some ideas of Timothy Gowers in the comments below, let me show that the second player has a drawing strategy.

Theorem. In the transfinite-play version of Connect-$\omega$ on a board of size $\omega\times\omega$, the second player has a drawing strategy.

Proof. We shall arrange that the second player will block all possible winning configurations for the first player, or to have column wins for each player. To block all row wins, the second player will arrange to occupy infinitely many cells in each row; to block all diagonal wins, the second player will aim to occupy infinitely many cells on each possible diagonal; and to block the column wins, the second player will aim either to have infinitely many cells on each column or to copy a winning column of the opponent on another column.

To achieve these things, we simply play as follows. Take the columns in successive groups of three. On the first column in each block of three, that is on the columns indexed $3m$, the second player will always answer a move by the first player on this column. In this way, the second player occupies every other cell on these columns—all at the same height. This will block all diagonal wins, because every diagonal winning configuration will need to go through such a cell.

On the remaining two columns in each group of three, columns $3m+1$ and $3m+2$, let the second player simply copy moves of the opponent on one of these columns by playing on the other. These moves will therefore be opposite colors, but at the same height. In this way, the second player ensures that he has infinitely many coins on each row, blocking the row wins. And also, this strategy ensures that in these two columns, at any limit stage, either neither player has achieved a winning configuration or both have.

Thus, we have produced a drawing strategy for the second player. $\Box$

Thus, there is no advantage to going first. What remains is to determine if the first player also has a drawing strategy, or whether the second player can actually force a win.

Gowers explains in the comments below also how to achieve such a copying mechanism to work on a diagonal, instead of just on a column.

I find it also fascinating to consider the natural generalizations of the game to larger ordinals. We may consider the game of Connect-$\alpha$ on a board of size $\kappa\times\lambda$, for any ordinals $\alpha,\kappa,\lambda$, with transfinite play, proceeding until the board is filled or the winning conditions are achieved. Clearly, there are some instances of this game where a player has a winning strategy, such as the original Connect-Four configuration, where the first player wins, and presumably many other instances.

Question. In which instances of Connect-$\alpha$ on a board of size $\kappa\times\lambda$ does one of the players have a winning strategy?

It seems to me that the groups-of-three-columns strategy described above generalizes to show that the second player has at least a drawing strategy in Connect-$\alpha$ on board $\kappa\times\lambda$, whenever $\alpha$ is infinite.

Stay tuned…

The modal logic of potentialism, ILLC Amsterdam, May 2019

This will be a talk at the Institute of Logic, Language and Computation (ILLC) at the University of Amsterdam for events May 11-12, 2019. See Joel David Hamkins in Amsterdam 2019.

Job Adriaenszoon Berckheyde [Public domain]

Abstract: Potentialism can be seen as a fundamentally model-theoretic notion, in play for any class of mathematical structures with an extension concept, a notion of substructure by which one model extends to another. Every such model-theoretic context can be seen as a potentialist framework, a Kripke model whose modal validities one can investigate. In this talk, I’ll explain the tools we have for analyzing the potentialist validities of such a system, with examples drawn from the models of arithmetic and set theory, using the universal algorithm and the universal definition.

Is there just one mathematical universe? DRIFT, Amsterdam, May 2019

This will be a talk for the Wijsgerig Festival DRIFT 2019, held in Amsterdam May 11, 2019. The theme of the conference is: Ontology.

Kamanasish Debnath [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)]

Abstract. What does it mean to make existence assertions in mathematics?
Is there a mathematical universe, perhaps an ideal mathematical reality, that the assertions are about? Is there possibly more than one such universe? Does every mathematical assertion ultimately have a definitive truth value? I shall lay out some of the back-and-forth in what is currently a vigorous debate taking place in the philosophy of set theory concerning pluralism in the set-theoretic foundations, concerning whether there is just one set-theoretic universe underlying our mathematical claims or whether there is a diversity of possible set-theoretic worlds.

At the conference venue in the Vondelpark, Amsterdam

Philosophy of Mathematics, graduate lecture seminar, Oxford, Trinity term 2019

This will be a graduate-level lecture seminar on the Philosophy of Mathematics, run jointly by Professor Timothy Williamson and myself, held during Trinity term 2019 at Oxford University. We shall meet every Tuesday 2-4 pm during term in the Ryle Room at the Radcliffe Humanities building.

We shall discuss a selection of topics in the philosophy of mathematics, based on the readings set for each week, as set out below. Discussion will be led each week either by Professor Williamson or myself.

In the classes led by Williamson, we shall discuss issues concerning the ontology of mathematics and what is involved in its application. In the classes led by me, we shall focus on the philosophy of set theory, covering set theory as a foundation of mathematics; determinateness in set theory; the status of the continuum hypothesis; and set-theoretic pluralism.

Week 1 (30 April)
Discussion led by Williamson. Reading: Robert Brandom, ‘The significance of complex numbers for Frege’s philosophy of mathematics’, Proceedings of the Aristotelian Society (1996): 293-315 https://www.jstor.org/stable/pdf/4545241.pdf

Week 2 (7 May)
Discussion led by Hamkins. Reading: Penelope Maddy, Defending the Axioms: On the Philosophical Foundations of Set Theory, OUP (2011), 150 pp.

Week 3 (14 May)
Discussion led by Hamkins. Reading: Donald Martin, ‘Multiple universes of sets and indeterminate truth values’, Topoi (2001): 5-16. https://link.springer.com/article/10.1023%2FA%3A1010600724850

Week 4 (21 May)
Discussion led by Hamkins. Reading: Chris Freiling, ‘Axioms of symmetry: throwing darts at the real number line’, Journal of Symbolic Logic (1986) https://www.jstor.org/stable/pdf/2273955.pdf. And: Solomon Feferman, ‘The Continuum Hypothesis is neither a definite mathematical problem nor a definite logical problem’, https://math.stanford.edu/~feferman/papers/CH_is_Indefinite.pdf

Week 5 (28 May)
Discussion led by Hamkins. Reading: his ‘The set-theoretic multiverse’, Review of Symbolic Logic (2012): 416-449
https://doi.org/10.1017/S1755020311000359. And: Penelope Maddy, ‘Set-theoretic foundations’, Contemporary Mathematics (2017). http://philsci-archive.pitt.edu/13027/1/MaddyFoundations.pdf

Week 6 (4 June)
Discussion led by Williamson. Reading: Cian Dorr, ‘Of numbers and electrons’, Proceedings of the Aristotelian Society (2010): 133-181. https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.1467-9264.2010.00282.x

Week 7 (11 June)
Discussion led by Williamson. Reading: Otávio Bueno and Mark Colyvan, ‘An inferential conception of the application of mathematics’, Noûs (2011): 345-374. https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.1468-0068.2010.00772.x

Week 8 (18 June)
Discussion led by Williamson. Reading: his ‘Alternative logics and applied mathematics’, Philosophical Issues (2018): 399-424. https://onlinelibrary.wiley.com/doi/epdf/10.1111/phis.12131

Kelley-Morse set theory does not prove the class Fodor principle

      • V. Gitman, J. D. Hamkins, and A. Karagila, “Kelley-Morse set theory does not prove the class Fodor theorem.” (manuscript under review)  
        @ARTICLE{GitmanHamkinsKaragila:KM-set-theory-does-not-prove-the-class-Fodor-theorem,
        author = {Victoria Gitman and Joel David Hamkins and Asaf Karagila},
        title = {Kelley-Morse set theory does not prove the class {F}odor theorem},
        journal = {},
        year = {},
        volume = {},
        number = {},
        pages = {},
        month = {},
        note = {manuscript under review},
        abstract = {},
        keywords = {under-review},
        eprint = {1904.04190},
        archivePrefix = {arXiv},
        primaryClass = {math.LO},
        source = {},
        doi = {},
        url = {http://wp.me/p5M0LV-1RD},
        }

Abstract.
We show that Kelley-Morse (KM) set theory does not prove the class Fodor principle, the assertion that every regressive class function $F:S\to\newcommand\Ord{\text{Ord}}\Ord$ defined on a stationary class $S$ is constant on a stationary subclass. Indeed, it is relatively consistent with KM for any infinite $\lambda$ with $\omega\leq\lambda\leq\Ord$ that there is a class function $F:\Ord\to\lambda$ that is not constant on any stationary class. Strikingly, it is consistent with KM that there is a class $A\subseteq\omega\times\Ord$, such that each section $A_n=\{\alpha\mid (n,\alpha)\in A\}$ contains a class club, but $\bigcap_n A_n$ is empty. Consequently, it is relatively consistent with KM that the class club filter is not $\sigma$-closed.

The class Fodor principle is the assertion that every regressive class function $F:S\to\Ord$ defined on a stationary class $S$ is constant on a stationary subclass of $S$. This statement can be expressed in the usual second-order language of set theory, and the principle can therefore be sensibly considered in the context of any of the various second-order set-theoretic systems, such as Gödel-Bernays (GBC) set theory or Kelley-Morse (KM) set theory. Just as with the classical Fodor’s lemma in first-order set theory, the class Fodor principle is equivalent, over a weak base theory, to the assertion that the class club filter is normal. We shall investigate the strength of the class Fodor principle and try to find its place within the natural hierarchy of second-order set theories. We shall also define and study weaker versions of the class Fodor principle.

If one tries to prove the class Fodor principle by adapting one of the classical proofs of the first-order Fodor’s lemma, then one inevitably finds oneself needing to appeal to a certain second-order class-choice principle, which goes beyond the axiom of choice and the global choice principle, but which is not available in Kelley-Morse set theory. For example, in one standard proof, we would want for a given $\Ord$-indexed sequence of non-stationary classes to be able to choose for each member of it a class club that it misses. This would be an instance of class-choice, since we seek to choose classes here, rather than sets. The class choice principle $\text{CC}(\Pi^0_1)$, it turns out, is sufficient for us to make these choices, for this principle states that if every ordinal $\alpha$ admits a class $A$ witnessing a $\Pi^0_1$-assertion $\varphi(\alpha,A)$, allowing class parameters, then there is a single class $B\subseteq \Ord\times V$, whose slices $B_\alpha$ witness $\varphi(\alpha,B_\alpha)$; and the property of being a class club avoiding a given class is $\Pi^0_1$ expressible.

Thus, the class Fodor principle, and consequently also the normality of the class club filter, is provable in the relatively weak second-order set theory $\text{GBC}+\text{CC}(\Pi^0_1)$. This theory is known to be weaker in consistency strength than the theory $\text{GBC}+\Pi^1_1$-comprehension, which is itself strictly weaker in consistency strength than KM.

But meanwhile, although the class choice principle is weak in consistency strength, it is not actually provable in KM; indeed, even the weak fragment $\text{CC}(\Pi^0_1)$ is not provable in KM. Those results were proved several years ago by the first two authors, but they can now be seen as consequences of the main result of this article (see corollary 15. In light of that result, however, one should perhaps not have expected to be able to prove the class Fodor principle in KM.

Indeed, it follows similarly from arguments of the third author in his dissertation that if $\kappa$ is an inaccessible cardinal, then there is a forcing extension $V[G]$ with a symmetric submodel $M$ such that $V_\kappa^M=V_\kappa$, which implies that $\mathcal M=(V_\kappa,\in, V^M_{\kappa+1})$ is a model of Kelley-Morse, and in $\mathcal M$, the class Fodor principle fails in a very strong sense.

In this article, adapting the ideas of Karagila to the second-order set-theoretic context and using similar methods as in Gitman and Hamkins’s previous work on KM, we shall prove that every model of KM has an extension in which the class Fodor principle fails in that strong sense: there can be a class function $F:\Ord\to\omega$, which is not constant on any stationary class. In particular, in these models, the class club filter is not $\sigma$-closed: there is a class $B\subseteq\omega\times\Ord$, each of whose vertical slices $B_n$ contains a class club, but $\bigcap B_n$ is empty.

Main Theorem. Kelley-Morse set theory KM, if consistent, does not prove the class Fodor principle. Indeed, if there is a model of KM, then there is a model of KM with a class function $F:\Ord\to \omega$, which is not constant on any stationary class; in this model, therefore, the class club filter is not $\sigma$-closed.

We shall also investigate various weak versions of the class Fodor principle.

Definition.

  1. For a cardinal $\kappa$, the class $\kappa$-Fodor principle asserts that every class function $F:S\to\kappa$ defined on a stationary class $S\subseteq\Ord$ is constant on a stationary subclass of $S$.
  2. The class ${<}\Ord$-Fodor principle is the assertion that the $\kappa$-class Fodor principle holds for every cardinal $\kappa$.
  3. The bounded class Fodor principle asserts that every regressive class function $F:S\to\Ord$ on a stationary class $S\subseteq\Ord$ is bounded on a stationary subclass of $S$.
  4. The very weak class Fodor principle asserts that every regressive class function $F:S\to\Ord$ on a stationary class $S\subseteq\Ord$ is constant on an unbounded subclass of $S$.

We shall separate these principles as follows.

Theorem. Suppose KM is consistent.

  1. There is a model of KM in which the class Fodor principle fails, but the class ${<}\Ord$-Fodor principle holds.
  2. There is a model of KM in which the class $\omega$-Fodor principle fails, but the bounded class Fodor principle holds.
  3. There is a model of KM in which the class $\omega$-Fodor principle holds, but the bounded class Fodor principle fails.
  4. $\text{GB}^-$ proves the very weak class Fodor principle.

Finally, we show that the class Fodor principle can neither be created nor destroyed by set forcing.

Theorem. The class Fodor principle is invariant by set forcing over models of $\text{GBC}^-$. That is, it holds in an extension if and only if it holds in the ground model.

Let us conclude this brief introduction by mentioning the following easy negative instance of the class Fodor principle for certain GBC models. This argument seems to be a part of set-theoretic folklore. Namely, consider an $\omega$-standard model of GBC set theory $M$ having no $V_\kappa^M$ that is a model of ZFC. A minimal transitive model of ZFC, for example, has this property. Inside $M$, let $F(\kappa)$ be the least $n$ such that $V_\kappa^M$ fails to satisfy $\Sigma_n$-collection. This is a definable class function $F:\Ord^M\to\omega$ in $M$, but it cannot be constant on any stationary class in $M$, because by the reflection theorem there is a class club of cardinals $\kappa$ such that $V_\kappa^M$ satisfies $\Sigma_n$-collection.

Read more by going to the full article:

  • V. Gitman, J. D. Hamkins, and A. Karagila, “Kelley-Morse set theory does not prove the class Fodor theorem.” (manuscript under review)  
    @ARTICLE{GitmanHamkinsKaragila:KM-set-theory-does-not-prove-the-class-Fodor-theorem,
    author = {Victoria Gitman and Joel David Hamkins and Asaf Karagila},
    title = {Kelley-Morse set theory does not prove the class {F}odor theorem},
    journal = {},
    year = {},
    volume = {},
    number = {},
    pages = {},
    month = {},
    note = {manuscript under review},
    abstract = {},
    keywords = {under-review},
    eprint = {1904.04190},
    archivePrefix = {arXiv},
    primaryClass = {math.LO},
    source = {},
    doi = {},
    url = {http://wp.me/p5M0LV-1RD},
    }

 

 

Kelley-Morse set theory does not prove the class Fodor Principle, CUNY Set Theory Seminar, March, 2019

This will be talk for the CUNY Set Theory seminar, Friday, March 22, 2019, 10 am in room 6417 at the CUNY Graduate Center.
Abstract. I shall discuss recent joint work with Victoria Gitman and Asaf Karagila, in which we proved that Kelley-Morse set theory (which includes the global choice principle) does not prove the class Fodor principle, the assertion that every regressive class function $F:S\to\text{Ord}$ defined on a stationary class $S$ is constant on a stationary subclass. Indeed, it is relatively consistent with KM for any infinite $\lambda$ with $\omega\leq\lambda\leq\text{Ord}$ that there is a class function $F:\text{Ord}\to\lambda$ that is not constant on any stationary class. Strikingly, it is consistent with KM that there is a sequence of classes $A_n$, each containing a class club, but the intersection of all $A_n$ is empty. Consequently, it is relatively consistent with KM that the class club filter is not $\sigma$-closed.
I am given to understand that the talk will be streamed live online. I’ll post further details when I have them.

Must there be numbers we cannot describe or define? Definability in mathematics and the Math Tea argument, Norwich, February 2019

I shall speak for the Pure Mathematics Research Seminar at the University of East Anglia in Norwich on Monday, 25 February, 2019.

Abstract. An old argument, heard perhaps at a good math tea, proceeds: “there must be some real numbers that we can neither describe nor define, since there are uncountably many real numbers, but only countably many definitions.” Does it withstand scrutiny? In this talk, I will discuss the phenomenon of pointwise definable structures in mathematics, structures in which every object has a property that only it exhibits. A mathematical structure is Leibnizian, in contrast, if any pair of distinct objects in it exhibit different properties. Is there a Leibnizian structure with no definable elements? Must indiscernible elements in a mathematical structure be automorphic images of one another? We shall discuss many elementary yet interesting examples, eventually working up to the proof that every countable model of set theory has a pointwise definable extension, in which every mathematical object is definable.

Lecture notes – Must every number be definable? Norwich Feb 2019

Potentialism and implicit actualism in the foundations of mathematics, Jowett Society lecture, Oxford, February 2019

This will be a talk for the Jowett Society on 8 February, 2019. The talk will take place in the Oxford Faculty of Philosophy, 3:30 – 5:30pm, in the Lecture Room of the Radcliffe Humanities building.

Abstract. Potentialism is the view, originating in the classical dispute between actual and potential infinity, that one’s mathematical universe is never fully completed, but rather unfolds gradually as new parts of it increasingly come into existence or become accessible or known to us. Recent work emphasizes the modal aspect of potentialism, while decoupling it from arithmetic and from infinity: the essence of potentialism is about approximating a larger universe by means of universe fragments, an idea that applies to set-theoretic as well as arithmetic foundations. The modal language and perspective allows one precisely to distinguish various natural potentialist conceptions in the foundations of mathematics, whose exact modal validities are now known. Ultimately, this analysis suggests a refocusing of potentialism on the issue of convergent inevitability in comparison with radical branching. I shall defend the theses, first, that convergent potentialism is implicitly actualist, and second, that we should understand ultrafinitism in modal terms as a form of potentialism, one with surprising parallels to the case of arithmetic potentialism.

Jowett Society talk entry | my posts on potentialism | Slides

Forcing as a computational process, Cambridge, Februrary 2019

This will be a talk for Set Theory in the United Kingdom (STUK 1), to be held in the other place, February 16, 2019.

Abstract. We investigate the senses in which set-theoretic forcing can be seen as a computational process on the models of set theory. Given an oracle for the atomic or elementary diagram of a model of set theory $\langle M,\in^M\rangle$, for example, we explain senses in which one may compute $M$-generic filters $G\subset P\in M$ and the corresponding forcing extensions $M[G]$. Meanwhile, no such computational process is functorial, for there must always be isomorphic alternative presentations of the same model of set theory $M$ that lead by the computational process to non-isomorphic forcing extensions $M[G]\not\cong M[G’]$. Indeed, there is no Borel function providing generic filters that is functorial in this sense.

This is joint work with Russell Miller and Kameryn Williams.

The rearrangement and subseries numbers: how much convergence suffices for absolute convergence? Mathematics Colloquium, University of Münster, January 2019

This will be a talk for the Mathematics Colloquium at the University of Münster, January 10, 2019.

Abstract. The Riemann rearrangement theorem asserts that a series $\sum_n a_n$ is absolutely convergent if and only if every rearrangement $\sum_n a_{p(n)}$ of it is convergent, and furthermore, any conditionally convergent series can be rearranged so as to converge to any desired extended real value. How many rearrangements $p$ suffice to test for absolute convergence in this way? The rearrangement number, a new cardinal characteristic of the continuum, is the smallest size of a family of permutations, such that whenever the convergence and value of a convergent series is invariant by all these permutations, then it is absolutely convergent. The subseries number is defined similarly, as the smallest number of subseries whose convergence suffices to test a series for absolute convergence. The exact values of the rearrangement and subseries numbers turns out to be independent of the axioms of set theory. In this talk, I shall place the rearrangement and subseries numbers into a discussion of cardinal characteristics of the continuum, including an elementary introduction to the continuum hypothesis and an account of Freiling’s axiom of symmetry.

This talk is based in part on joint work with Andreas Blass, Joerg Brendle, Will Brian, myself, Michael Hardy and Paul Larson.

  • The rearrangement number.
    • A. Blass, J. Brendle, W. Brian, J. D. Hamkins, M. Hardy, and P. B. Larson, “The rearrangement number,” ArXiv e-prints, 2016. (manuscript under review)  
      @ARTICLE{BlassBrendleBrianHamkinsHardyLarson:TheRearrangementNumber,
      author = {Andreas Blass and Jörg Brendle and Will Brian and Joel David Hamkins and Michael Hardy and Paul B. Larson},
      title = {The rearrangement number},
      journal = {ArXiv e-prints},
      year = {2016},
      volume = {},
      number = {},
      pages = {},
      month = {},
      note = {manuscript under review},
      url = {http://jdh.hamkins.org/the-rearrangement-number},
      eprint = {1612.07830},
      archivePrefix = {arXiv},
      primaryClass = {math.LO},
      abstract = {},
      keywords = {under-review},
      source = {},
      }

  • The subseries number.

An infinitary-logic-free proof of the Barwise end-extension theorem, with new applications, University of Münster, January 2019

This will be a talk for the Logic Oberseminar at the University of Münster, January 11, 2019.

Abstract. I shall present a new proof, with new applications, of the amazing extension theorem of Barwise (1971), which shows that every countable model of ZF has an end-extension to a model of ZFC + V=L. This theorem is both (i) a technical culmination of Barwise’s pioneering methods in admissible set theory and the admissible cover, but also (ii) one of those rare mathematical results saturated with significance for the philosophy of set theory. The new proof uses only classical methods of descriptive set theory, and makes no mention of infinitary logic. The results are directly connected with recent advances on the universal $\Sigma_1$-definable finite set, a set-theoretic version of Woodin’s universal algorithm.