Skolem’s paradox and the countable transitive submodel theorem, Leeds Set Theory Seminar, May 2025

This will be an online talk for the Leeds Set Theory Seminar, 21 May 2025 1pm BST. Contact the organizers (Hope Duncan) for Teams access.

Abstract: One can find in the philosophical research literature surrounding Skolem’s paradox a certain claim, referred to as the transitive submodel theorem, according to which every transitive model of set theory admits a countable transitive submodel of the same theory. Although the statement may initially appear plausible—perhaps one thinks it follows from an application of the downward Löwenheim-Skolem theorem—nevertheless it turns out that as a mathematical claim, it is overstated. There is no such theorem. In this talk I shall give a full account of the countable transitive submodel proposition, taken as a principle of set theory, showing from suitable hypotheses that counterexamples are possible and characterizing exactly the circumstances in which the principle does hold. Ultimately, the countable transitive submodel proposition should be seen as a certain anti-large cardinal principle that is equiconsistent with but independent of ZFC and refuted by all the moderately strong large cardinal notions. This is joint work in progress with Timothy Button, with thanks to W. Hugh Woodin.

The Church of Logic podcast, April 2025

I was interviewed by Cody Roux for The Church of Logic podcast—a fascinating sweeping conversation on issues in the philosophy of mathematics and set theory, including what I described as a fundamental dichotomy between two perspectives on the nature of mathematics and what it is all about. Cody and I have affinities with opposite sides of this dichotomy, which made for a fruitful exchange.

A potentialist conception of ultrafinitism, Columbia University, April 2025


This will be a talk for the conference on Ultrafinitism: Physics, Mathematics, and Philosophy at Columbia University in New York, April 11-13, 2025.

Abstract. I shall argue in various respects that ultrafinitism is fruitfully understood from a potentialist perspective, an approach to the topic that enables certain formal treatments of ultrafinitist ideas, which otherwise often struggle to find satisfactory formalization.

The hierarchy of consistency strengths for membership in a computably enumerable set, Oxford Logic Seminar, May 2025

 This will be a talk for the Logic Seminar at the Mathematical Institute of the University of Oxford, 29 May 2025 5pm Andrew Wiles Building.

Abstract. For a given computably enumerable set W, consider the spectrum of assertions of the form nW. If W is c.e. but not computably decidable, it is easy to see that many of these statements will be independent of PA, for otherwise we could decide W by searching for proofs of nW. In this work, we investigate the possible hierarchies of consistency strengths that arise. For example, there is a c.e. set Q for which the consistency strengths of the assertions nQ are linearly ordered like the rational line. More generally, I shall prove that every computable preorder relation on the natural numbers is realized exactly as the hierarchy of consistency strength for the membership statements nW of some computably enumerable set W. After this, we shall consider the c.e. preorder relations. This is joint work with Atticus Stonestrom (Notre Dame).

Introduction to modal model theory, Panglobal Algebra and Logic Seminar, Boulder, March 2025

This will be a talk for the Panglobal Algebra and Logic seminar at the University of Colorado Boulder, March 12, 2025, 3:30pm MDT

The talk will be available live on Zoom. Contact the organizers for access.

Abstract. I shall introduce and describe the subject of modal model theory, in which one studies a mathematical structure within a class of similar structures under an extension concept, giving rise to mathematically natural notions of possibility and necessity, a form of mathematical potentialism. We study the class of all graphs, or all groups, all fields, all orders, or what have you; a natural case is the class of all models of a fixed first-order theory. In this talk, I shall describe some of the resulting elementary theory, particularly the remarkable expressive power of modal graph theory. This is joint work with my Oxford student Wojciech Wołoszyn.

2025 William Reinhardt Memorial Lecture, Boulder

I am honored to be giving the 2025 William Reinhardt Memorial Lecture at the University of Colorado Boulder, March 11, 2025.

How we might have taken the Continuum Hypothesis as a fundamental axiom, necessary for mathematics

Abstract. I shall describe a simple historical thought experiment showing how our attitude toward the continuum hypothesis might easily have been very different than it is. If our mathematical history had been just a little different, I claim, if certain mathematical discoveries had been made in a slightly different order, then we would naturally have come to view the continuum hypothesis as a fundamental axiom of set theory, necessary for mathematics, indispensable even for the core ideas of calculus.

On Skolem’s paradox and the transitive submodel theorem, Rust Belt Workshop in the Philosophy of Logic, Language, and Mathematics, February 2025

This will be a talk for the Rust Belt Workshop in the Philosophy of Logic, Language, and Mathematics, held at Ohio State University in Columbus, Ohio, February 8-9, 2025, University Hall (230 N Oval Mall, Columbus, OH) Room 386B.

Abstract. One can find in the philosophical research literature surrounding Skolem’s paradox a certain claim, referred to as the transitive submodel theorem, according to which every transitive model of set theory admits a countable transitive submodel of the same theory. Although the statement may initially appear quite plausible—perhaps one thinks it follows  from an application of the downward Löwenheim-Skolem theorem—nevertheless it turns out that as a mathematical claim, it is overstated, and there is no such theorem. It is a mistake, although an interesting mistake worth discussing. In this talk I shall give a full account of the countable transitive submodel proposition, taken as a principle of set theory, by showing from suitable hypotheses that counterexamples are possible, characterizing exactly the circumstances in which the principle does hold, and investigating the consistency strength of the proposition and also the consistency strength of its negation. Ultimately, the countable transitive submodel proposition should be seen as a certain anti-large cardinal principle that is equiconsistent with but independent of ZFC, refuted by all the moderately strong large cardinal notions.

This is joint work in progress with Timothy Button, with thanks to W. Hugh Woodin.

I will post a link to the paper when it is available.

The covering reflection principle – Oberwolfach January 2025

This was a talk I gave at the Set Theory Workshop at the Mathematisches Forschungsinstitut in Oberwolfach, Germany, 12-17 January 2025.

Abstract. The principle of covering reflection holds of a cardinal κ if for every structure B in a countable first-order language there is a structure A of size less than κ, such that B is covered by elementary images of A in B. Is there any such cardinal? Is the principle consistent? Does it have large cardinal strength? This is joint work with myself, Nai-Chung Hou, Andreas Lietz, and Farmer Schlutzenberg.

The Human Podcast: 10 questions in 10 minutes

I had an enjoyable little discussion with Joe Murray of The Human Podcast, part of his new series, called 10 questions in 10 minutes, in which he asks his interview subjects for short answers to ten quick questions on their topic. Here is our conversation:

Joe was adamant about the 1 minute timeline for each question, and was holding up timers and giving me the 5 second warning and so forth, but of course, it was simply impossible! There was no way for me to contain my answers to the time limit.

Meanwhile, you can follow through to our previous, longer discussion here:

The computable surreal numbers, Notre Dame Logic Seminar, December 2024

This will be a talk for the Notre Dame Logic Seminar, 3 December 2024, 2:00pm, 125 Hayes-Healey.

Abstract. I shall give an account of the theory of computable surreal numbers, proving that these form a real-closed field. Which real numbers arise as computable surreal numbers? You may be surprised to learn that some noncomputable real numbers have computable surreal presentations, and indeed the computable surreal real numbers are exactly the hyperarithmetic reals. More generally, the computable surreal numbers are exactly those with a hyperarithmetic surreal sign sequence. This is joint work with Dan Turetsky, but we subsequently found that it is a rediscovery of earlier work of Jacob Lurie.

Lecture notes:

See related MathOverflow posts:

Also see my elementary introduction to the surreal numbers: The surreal numbers

Determinateness of truth does not come for free from determinateness of objects, Singapore, November 2024

 This will be a talk for the (In)determinacy in Mathematics conference at the National University of Singapore, 20-22 November 2024

Abstract. I shall discuss the question whether we may regard determinateness of truth as flowing from determinateness of objects in a mathematical structure. I shall showcase several results in the model theory of set theory and arithmetic that seem to speak against this. For example, there are two models of ZFC set theory that share exactly the same arithmetic structure of the natural numbers ⟨ℕ,+,·,0,1,<⟩, what they each view as the standard model of arithmetic, but they disagree about which arithmetic sentences are true in that structure. There are models of ZFC set theory with the same arithmetic structure and the same arithmetic truth, but which disagree on truth-about-truth, or that agree on that, but disagree on higher levels of iterated truth, at any desired level. There are models of set theory with the same natural numbers and real numbers, but which disagree on projective truth. There are models of ZFC that have a rank initial segment Vθ in common, but they disagree about whether it is a model of ZFC. All these examples show senses in which determinateness about objects does not seem to cause determinateness about truth. (This is joint work with Ruizhi Yang.)

The covering reflection theorem, Madison Logic Seminar, October 2024

This will be a talk at the UW Madison Logic Seminar on 22 October 2024.

Abstract. The principle of covering reflection holds of a cardinal κ if for every structure B in a countable first-order language there is a structure A of size less than κ, such that B is covered by elementary images of A in B. Is there any such cardinal? Is the principle consistent? Does it have large cardinal strength? This is joint work with myself, Nai-Chung Hou, Andreas Lietz, and Farmer Schlutzenberg.

The talk will reportedly streamed online, so kindly contact the organizers for access.

I will be staying in Madison for a few days to talk logic with researchers there.

Infinite-time computable analogues of the universal algorithm, Generalized Computability Theory Workshop, Spain, August 2024

This will be a talk at the Generalized Computability Theory workshop in Castro Urdiales, Spain, a beautiful setting on the sea near Bilbao, 19-23 August 2024.

Abstract. I shall present infinite-time computable analogues of the universal algorithm, which can in principle produce any desired output stream, if only it is run in the right set-theoretic universe, and then extended as desired in further universes.

How we might have viewed the continuum hypothesis as a fundamental axiom necessary for mathematics, Oxford Phil Maths seminar, May 2025

This will be a talk for the Philosophy of Mathematics Seminar at the University of Oxford, 19 May 2025.

Abstract. I shall describe a simple historical thought experiment showing how our attitude toward the continuum hypothesis could easily have been very different than it is. If our mathematical history had been just a little different, I claim, if certain mathematical discoveries had been made in a slightly different order, then we would naturally view the continuum hypothesis as a fundamental axiom of set theory, necessary for mathematics and indeed indispensable for calculus.

I shall be speaking on my paper: How the continuum hypothesis could have been a fundamental axiom

Puzzles of reality and infinity, Mindscape Podcast

I was interviewed by Sean Carroll for his Mindscape Podcast, broadcast 15 July 2024.