Set-theoretic potentialism, CUNY Logic Workshop, September, 2016

This will be a talk for the CUNY Logic Workshop, September 16, 2016, at the CUNY Graduate Center, Room 6417, 2-3:30 pm.

Book 06487 20040730160046 droste effect nevit.jpgAbstract.  In analogy with the ancient views on potential as opposed to actual infinity, set-theoretic potentialism is the philosophical position holding that the universe of set theory is never fully completed, but rather has a potential character, with greater parts of it becoming known to us as it unfolds. In this talk, I should like to undertake a mathematical analysis of the modal commitments of various specific natural accounts of set-theoretic potentialism. After developing a general model-theoretic framework for potentialism and describing how the corresponding modal validities are revealed by certain types of control statements, which we call buttons, switches, dials and ratchets, I apply this analysis to the case of set-theoretic potentialism, including the modalities of true-in-all-larger-$V_\beta$, true-in-all-transitive-sets, true-in-all-Grothendieck-Zermelo-universes, true-in-all-countable-transitive-models and others. Broadly speaking, the height-potentialist systems generally validate exactly S4.3 and the height-and-width-potentialist systems generally validate exactly S4.2. Each potentialist system gives rise to a natural accompanying maximality principle, which occurs when S5 is valid at a world, so that every possibly necessary statement is already true.  For example, a Grothendieck-Zermelo universe $V_\kappa$, with $\kappa$ inaccessible, exhibits the maximality principle with respect to assertions in the language of set theory using parameters from $V_\kappa$ just in case $\kappa$ is a $\Sigma_3$-reflecting cardinal, and it exhibits the maximality principle with respect to assertions in the potentialist language of set theory with parameters just in case it is fully reflecting $V_\kappa\prec V$.

This is current joint work with Øystein Linnebo, in progress, which builds on some of my prior work with George Leibman and Benedikt Löwe in the modal logic of forcing.

CUNY Logic Workshop abstract | link to article will be posted later

Set-theoretic mereology as a foundation of mathematics, Logic and Metaphysics Workshop, CUNY, October 2016

This will be a talk for the Logic and Metaphysics Workshop at the CUNY Graduate Center, GC 5382, Monday, October 24, 2016, 4:15-6:15 pm.

Venn_Diagram_of_sets_((P),(Q),(R))Abstract. In light of the comparative success of membership-based set theory in the foundations of mathematics, since the time of Cantor, Zermelo and Hilbert, it is natural to wonder whether one might find a similar success for set-theoretic mereology, based upon the set-theoretic inclusion relation $\subseteq$ rather than the element-of relation $\in$.  How well does set-theoretic mereological serve as a foundation of mathematics? Can we faithfully interpret the rest of mathematics in terms of the subset relation to the same extent that set theorists have argued (with whatever degree of success) that we may find faithful representations in terms of the membership relation? Basically, can we get by with merely $\subseteq$ in place of $\in$? Ultimately, I shall identify grounds supporting generally negative answers to these questions, concluding that set-theoretic mereology by itself cannot serve adequately as a foundational theory.

This is joint work with Makoto Kikuchi, and the talk is based on our joint article:

J. D. Hamkins and M. Kikuchi, Set-theoretic mereology, Logic and Logical Philosophy, special issue “Mereology and beyond, part II”, pp. 1-24, 2016.

The modal logic of set-theoretic potentialism, Kyoto, September 2016

Kyoto cuisineThis will be a talk for the workshop conference Mathematical Logic and Its Applications, which will be held at the Research Institute for Mathematical Sciences, Kyoto University, Japan, September 26-29, 2016, organized by Makoto Kikuchi. The workshop is being held in memory of Professor Yuzuru Kakuda, who was head of the research group in logic at Kobe University during my stay there many years ago.

Abstract.  Set-theoretic potentialism is the ontological view in the philosophy of mathematics that the universe of set theory is never fully completed, but rather has a potential character, with greater parts of it becoming known to us as it unfolds. In this talk, I should like to undertake a mathematical analysis of the modal commitments of various specific natural accounts of set-theoretic potentialism. After developing a general model-theoretic framework for potentialism and describing how the corresponding modal validities are revealed by certain types of control statements, which we call buttons, switches, dials and ratchets, I apply this analysis to the case of set-theoretic potentialism, including the modalities of true-in-all-larger-$V_\beta$, true-in-all-transitive-sets, true-in-all-Grothendieck-Zermelo-universes, true-in-all-countable-transitive-models and others. Broadly speaking, the height-potentialist systems generally validate exactly S4.3 and the height-and-width-potentialist systems validate exactly S4.2. Each potentialist system gives rise to a natural accompanying maximality principle, which occurs when S5 is valid at a world, so that every possibly necessary statement is already true.  For example, a Grothendieck-Zermelo universe $V_\kappa$, with $\kappa$ inaccessible, exhibits the maximality principle with respect to assertions in the language of set theory using parameters from $V_\kappa$ just in case $\kappa$ is a $\Sigma_3$-reflecting cardinal, and it exhibits the maximality principle with respect to assertions in the potentialist language of set theory with parameters just in case it is fully reflecting $V_\kappa\prec V$.

This is joint work with Øystein Linnebo, which builds on some of my prior work with George Leibman and Benedikt Löwe in the modal logic of forcing. Our research article is currently in progress.

Slides | Workshop program

The rearrangement number: how many rearrangements of a series suffice to verify absolute convergence? Mathematics Colloquium at Penn, September 2016

This will be a talk for the Mathematics Colloquium at the University of Pennsylvania, Wednesday, September 14, 2016, 3:30 pm, tea at 3 pm, in the mathematics department.

UPenn Campus
Abstract. The well-known Riemann rearrangement theorem asserts that a series $\sum_n a_n$ is absolutely convergent if and only if every rearrangement $\sum_n a_{p(n)}$ of it is convergent, and furthermore, any conditionally convergent series can be rearranged so as to converge to any desired extended real value. But how many rearrangements $p$ suffice to test for absolute convergence in this way? The rearrangement number, a new cardinal characteristic of the continuum, is the smallest size of a family of permutations, such that whenever the convergence and value of a convergent series is invariant by all these permutations, then it is absolutely convergent. The exact value of the rearrangement number turns out to be independent of the axioms of set theory. In this talk, I shall place the rearrangement number into a discussion of cardinal characteristics of the continuum, including an elementary introduction to the continuum hypothesis and, time permitting, an account of Freiling’s axiom of symmetry.

This talk is based in part on current joint work with Jörg Brendle, Andreas Blass, Will Brian, myself, Michael Hardy and Paul Larson.

Related MathOverflow post: How many rearrangements must fail to alter the value of a sum before you conclude that none do?

Set-theoretic geology and the downward-directed grounds hypothesis, CUNY Set Theory seminar, September 2016

This will be a talk for the CUNY Set Theory Seminar, September 2 and 9, 2016.

Blender3D EarthQuarterCut.jpgIn two talks, I shall give a complete detailed account of Toshimichi Usuba’s recent proof of the strong downward-directed grounds hypothesis.  This breakthrough result answers what had been for ten years the central open question in the area of set-theoretic geology and leads immediately to numerous consequences that settle many other open questions in the area, as well as to a sharpening of some of the central concepts of set-theoretic geology, such as the fact that the mantle coincides with the generic mantle and is a model of ZFC.

Although forcing is often viewed as a method of constructing larger models extending a given model of set theory, the topic of set-theoretic geology inverts this perspective by investigating how the current set-theoretic universe $V$ might itself have arisen as a forcing extension of an inner model.  Thus, an inner model $W\subset V$ is a ground of $V$ if we can realize $V=W[G]$ as a forcing extension of $W$ by some $W$-generic filter $G\subset\mathbb{Q}\in W$.  It is a consequence of the ground-model definability theorem that every such $W$ is definable from parameters, and from this it follows that many second-order-seeming questions about the structure of grounds turn out to be first-order expressible in the language of set theory.

For example, Reitz had inquired in his dissertation whether any two grounds of $V$ must have a common deeper ground. Fuchs, myself and Reitz introduced the downward-directed grounds hypothesis DDG and the strong DDG, which asserts a positive answer, even for any set-indexed collection of grounds, and we showed that this axiom has many interesting consequences for set-theoretic geology.

Last year, Usuba proved the strong DDG, and I shall give a complete account of the proof, with some simplifications I had noticed. I shall also present Usuba’s related result that if there is a hyper-huge cardinal, then there is a bedrock model, a smallest ground. I find this to be a surprising and incredible result, as it shows that large cardinal existence axioms have consequences on the structure of grounds for the universe.

Among the consequences of Usuba’s result I shall prove are:

  1. Bedrock models are unique when they exist.
  2. The mantle is absolute by forcing.
  3. The mantle is a model of ZFC.
  4. The mantle is the same as the generic mantle.
  5. The mantle is the largest forcing-invariant class, and equal to the intersection of the generic multiverse.
  6. The inclusion relation agrees with the ground-of relation in the generic multiverse. That is, if $N\subset M$ are in the same generic multiverse, then $N$ is a ground of $M$.
  7. If ZFC is consistent, then the ZFC-provably valid downward principles of forcing are exactly S4.2.
  8. (Usuba) If there is a hyper-huge cardinal, then there is a bedrock for the universe.

Related topics in set-theoretic geology:

CUNY Set theory seminar abstract I | abstract II

Pluralism-inspired mathematics, including a recent breakthrough in set-theoretic geology, Set-theoretic Pluralism Symposium, Aberdeen, July 2016

Set-theoretic Pluralism, Symposium I, July 12-17, 2016, at the University of Aberdeen.  My talk will be the final talk of the conference.

University of AberdeenAbstract. I shall discuss several bits of pluralism-inspired mathematics, including especially an account of Toshimichi Usuba’s recent proof of the strong downward-directed grounds DDG hypothesis, which asserts that the collection of ground models of the set-theoretic universe is downward directed. This breakthrough settles several of what were the main open questions of set-theoretic geology. It implies, for example, that the mantle is a model of ZFC and is identical to the generic mantle and that it is therefore the largest forcing-invariant class. Usuba’s analysis also happens to show that the existence of certain very large cardinals outright implies that there is a smallest ground model of the universe, an unexpected connection between large cardinals and forcing. In addition to these results, I shall present several other instances of pluralism-inspired mathematics, including a few elementary but surprising results that I hope will be entertaining.

SlidesSet-theoretic Pluralism Network | Conference program

Same structure, different truths, Stanford University CSLI, May 2016

This will be a talk for the Workshop on Logic, Rationality, and Intelligent Interaction at the CSLI, Stanford University, May 27-28, 2016.

Abstract. To what extent does a structure determine its theory of truth? I shall discuss several surprising mathematical results illustrating senses in which it does not, for the satisfaction relation of first-order logic is less absolute than one might have expected. Two models of set theory, for example, can have exactly the same natural numbers and the same arithmetic structure $\langle\mathbb{N},+,\cdot,0,1,<\rangle$, yet disagree on what is true in this structure; they have the same arithmetic, but different theories of arithmetic truth; two models of set theory can have the same natural numbers and a computable linear order in common, yet disagree on whether it is a well-order; two models of set theory can have the same natural numbers and the same reals, yet disagree on projective truth; two models of set theory can have a rank initial segment of the universe $\langle V_\delta,{\in}\rangle$ in common, yet disagree about whether it is a model of ZFC. These theorems and others can be proved with elementary classical model-theoretic methods, which I shall explain. Indefinite arithmetic truthOn the basis of these observations, Ruizhi Yang (Fudan University, Shanghai) and I argue that the definiteness of the theory of truth for a structure, even in the case of arithmetic, cannot be seen as arising solely from the definiteness of the structure itself in which that truth resides, but rather is a higher-order ontological commitment.

Slides | Main article: Satisfaction is not absolute | CLSI 2016 | Abstract at CLSI

Open determinacy for games on the ordinals, Torino, March 2016

Loggiato

 

 

 

 

The Minerva Statue in front of the Rectorate Palace at the University of Turin.This will be a seminar talk I shall give on March 3, 2016 at the University of Torino, Italy, in the same department where Giuseppe Peano had his position.  I shall be in Italy for the dissertation defense of Giorgio Audrito, on whose dissertation committee I am serving as president.

Abstract. The principle of open determinacy for class games — two-player games of perfect information with plays of length $\omega$, where the moves are chosen from a possibly proper class, such as games on the ordinals — is not provable in Zermelo-Fraenkel set theory ZFC or Gödel-Bernays set theory GBC, if these theories are consistent, because provably in ZFC there is a definable open proper class game with no definable winning strategy. In fact, the principle of open determinacy and even merely clopen determinacy for class games implies Con(ZFC) and iterated instances Con(Con(ZFC)) and more, because it implies that there is a satisfaction class for first-order truth, and indeed a transfinite tower of truth predicates $\text{Tr}_\alpha$ for iterated truth-about-truth, relative to any class parameter. This is perhaps explained, in light of the Tarskian recursive definition of truth, by the more general fact that the principle of clopen determinacy is exactly equivalent over GBC to the principle of elementary transfinite recursion ETR over well-founded class relations. Meanwhile, the principle of open determinacy for class games is provable in the stronger theory GBC+$\Pi^1_1$-comprehension, a proper fragment of Kelley-Morse set theory KM.

Lewis ChessmenThis is joint work with Victoria Gitman. See our article, Open determinacy for class games, which is currently under review.

Freiling’s axiom of symmetry, or throwing darts at the real line, Graduate Student Colloquium, April 2016

This will be a talk I’ll give at the CUNY Graduate Center Graduate Student Colloquium on Monday, April 11 (new date!), 2016, 4-4:45 pm.  The talk will be aimed at a general audience of mathematics graduate students.

By PeterPan23 [Public domain], via Wikimedia Commons

Abstract. I shall give an elementary presentation of Freiling’s axiom of symmetry, which is the principle asserting that if $x\mapsto A_x$ is a function mapping every real $x\in[0,1]$ in the unit interval to a countable set of such reals $A_x\subset[0,1]$, then there are two reals $x$ and $y$ for which $x\notin A_y$ and $y\notin A_x$.  To argue for the truth of this principle, Freiling imagined throwing two darts at the real number line, landing at $x$ and $y$ respectively: almost surely, the location $y$ of the second dart is not in the set $A_x$ arising from that of the first dart, since that set is countable; and by symmetry, it shouldn’t matter which dart we imagine as being first. So it may seem that almost every pair must fulfill the principle. Nevertheless, the principle is independent of the axioms of ZFC and in fact it is provably equivalent to the failure of the continuum hypothesis.  I’ll introduce the continuum hypothesis in a general way and discuss these foundational matters, before providing a proof of the equivalence of $\neg$CH with the axiom of symmetry. The axiom of symmetry admits natural higher dimensional analogues, such as the case of maps $(x,y)\mapsto A_{x,y}$, where one seeks a triple $(x,y,z)$ for which no member is in the set arising from the other two, and these principles also have an equivalent formulation in terms of the size of the continuum.

Freiling axiom of symmetry on MathOverflow | On Wikipedia | Graduate Student Colloquium


The rearrangement number: how many rearrangements of a series suffice to verify absolute convergence? Vassar Math Colloquium, November 2015

This will be a talk for the Mathematics Colloquium at Vassar College, November 10, 2015, tea at 4:00 pm, talk at 4:15 pm, Rockefeller Hall 310

Abstract. The Riemann rearrangement theorem asserts that a series $\sum_n a_n$ is absolutely convergent if and only if every rearrangement $\sum_n a_{p(n)}$ of it is convergent, and furthermore, any conditionally convergent series can be rearranged so as to converge to any desired extended real value. How many rearrangements $p$ suffice to test for absolute convergence in this way? The rearrangement number, a new cardinal characteristic of the continuum introduced just recently, is the smallest size of a family of permutations, such that whenever the convergence and value of a convergent series is invariant by all these permutations, then it is absolutely convergent. The exact value of the rearrangement number turns out to be independent of the axioms of set theory. In this talk, I shall place the rearrangement number into a discussion of cardinal characteristics of the continuum, including an elementary introduction to the continuum hypothesis and an account of Freiling’s axiom of symmetry.

This talk is based in part on current joint work with Andreas Blass, Will Brian, myself, Michael Hardy and Paul Larson.

My Lecture Notes are available. 

The rearrangement number, CUNY set theory seminar, November 2015

This will be a talk for the CUNY Set Theory Seminar on November 6, 2015.

The Riemann rearrangement theorem states that a convergent real series $\sum_n a_n$ is absolutely convergent if and only if the value of the sum is invariant under all rearrangements $\sum_n a_{p(n)}$ by any permutation $p$ on the natural numbers; furthermore, if the series is merely conditionally convergent, then one may find rearrangements for which the new sum $\sum_n a_{p(n)}$ has any desired (extended) real value or which becomes non-convergent.  In recent joint work with Andreas Blass, Will Brian, myself, Michael Hardy and Paul Larson, based on an exchange in reply to a Hardy’s MathOverflow question on the topic, we investigate the minimal size of a family of permutations that can be used in this manner to test an arbitrary convergent series for absolute convergence.

Specifically, we define the rearrangement number $\newcommand\rr{\mathfrak{rr}}\rr$ (“double-r”), a new cardinal characteristic of the continuum, to be the smallest cardinality of a set $P$ of permutations of the natural numbers, such that if a convergent real series $\sum_n a_n$ remains convergent and with the same sum after all rearrangements $\sum_n a_{p(n)}$ by a permutation $p\in P$, then it is absolutely convergent. The corresponding rearrangement number for sums, denoted $\newcommand\rrsum{\rr_{\scriptscriptstyle\Sigma}}
\rrsum$, is the smallest cardinality of a family $P$ of permutations, such that if a series $\sum_n a_n$ is conditionally convergent, then there is a rearrangement $\sum_n a_{p(n)}$, by some permutation $p \in P$, which converges to a different sum. We investigate the basic properties of these numbers, and explore their relations with other cardinal characteristics of the continuum. Our main results are that $\mathfrak{b}\leq\rr\leq\mathop{\bf non}(\mathcal{M})$, that $\mathfrak{d}\leq \rrsum$, and that $\mathfrak{b}<\rr$ is relatively consistent.

MathOverflow question | CUNY Set Theory Seminar

Open determinacy for games on the ordinals is stronger than ZFC, CUNY Logic Workshop, October 2015

This will be a talk for the CUNY Logic Workshop on October 2, 2015.

Abstract. The principle of open determinacy for class games — two-player games of perfect information with plays of length $\omega$, where the moves are chosen from a possibly proper class, such as games on the ordinals — is not provable in Zermelo-Fraenkel set theory ZFC or Gödel-Bernays set theory GBC, if these theories are consistent, because provably in ZFC there is a definable open proper class game with no definable winning strategy. In fact, the principle of open determinacy and even merely clopen determinacy for class games implies Con(ZFC) and iterated instances Con(Con(ZFC)) and more, because it implies that there is a satisfaction class for first-order truth, and indeed a transfinite tower of truth predicates $\text{Tr}_\alpha$ for iterated truth-about-truth, relative to any class parameter. This is perhaps explained, in light of the Tarskian recursive definition of truth, by the more general fact that the principle of clopen determinacy is exactly equivalent over GBC to the principle of elementary transfinite recursion ETR over well-founded class relations. Meanwhile, the principle of open determinacy for class games is provable in the stronger theory GBC+$\Pi^1_1$-comprehension, a proper fragment of Kelley-Morse set theory KM.

This is joint work with Victoria Gitman, with the helpful participation of Thomas Johnstone.

Related article and posts:

 

 

Upward closure in the generic multiverse of a countable model of set theory, RIMS 2015, Kyoto, Japan

Philosophers Walk Kyoto Japan (summer)This will be a talk for the conference Recent Developments in Axiomatic Set Theory at the Research Institute for Mathematical Sciences (RIMS) in Kyoto, Japan, September 16-18, 2015.

Abstract. Consider a countable model of set theory amongst its forcing extensions, the ground models of those extensions, the extensions of those models and so on, closing under the operations of forcing extension and ground model.  This collection is known as the generic multiverse of the original model.  I shall present a number of upward-oriented closure results in this context. For example, for a long-known negative result, it is a fun exercise to construct forcing extensions $M[c]$ and $M[d]$ of a given countable model of set theory $M$, each by adding an $M$-generic Cohen real, which cannot be amalgamated, in the sense that there is no common extension model $N$ that contains both $M[c]$ and $M[d]$ and has the same ordinals as $M$. On the positive side, however, any increasing sequence of extensions $M[G_0]\subset M[G_1]\subset M[G_2]\subset\cdots$, by forcing of uniformly bounded size in $M$, has an upper bound in a single forcing extension $M[G]$. (Note that one cannot generally have the sequence $\langle G_n\mid n<\omega\rangle$ in $M[G]$, so a naive approach to this will fail.)  I shall discuss these and related results, many of which appear in the “brief upward glance” section of my recent paper:  G. Fuchs, J. D. Hamkins and J. Reitz, Set-theoretic geology.


Universality and embeddability amongst the models of set theory, CTFM 2015, Tokyo, Japan

Tokyo Institute of TechnologyThis will be a talk for the Computability Theory and Foundations of Mathematics conference at the Tokyo Institute of Technology, September 7-11, 2015.  The conference is held in celebration of Professor Kazuyuki Tanaka’s 60th birthday.

Abstract. Recent results on the embeddability phenomenon and universality amongst the models of set theory are an appealing blend of ideas from set theory, model theory and computability theory. Central questions remain open.

A surprisingly vigorous embeddability phenomenon has recently been uncovered amongst the countable models of set theory. It turns out, for instance, that among these models embeddability is linear: for any two countable models of set theory, one of them embeds into the other. Indeed, one countable model of set theory $M$ embeds into another $N$ just in case the ordinals of $M$ order-embed into the ordinals of $N$. This leads to many surprising instances of embeddability: every forcing extension of a countable model of set theory, for example, embeds into its ground model, and every countable model of set theory, including every well-founded model, embeds into its own constructible universe.

V to LAlthough the embedding concept here is the usual model-theoretic embedding concept for relational structures, namely, a map $j:M\to N$ for which $x\in^M y$ if and only if $j(x)\in^N j(y)$, it is a weaker embedding concept than is usually considered in set theory, where embeddings are often elementary and typically at least $\Delta_0$-elementary. Indeed, the embeddability result is surprising precisely because we can easily prove that in many of these instances, there can be no $\Delta_0$-elementary embedding.

The proof of the embedding theorem makes use of universality ideas in digraph combinatorics, including an acyclic version of the countable random digraph, the countable random $\mathbb{Q}$-graded digraph, and higher analogues arising as uncountable Fraïssé limits, leading to the hypnagogic digraph, a universal homogeneous graded acyclic class digraph, closely connected with the surreal numbers. Thus, the methods are a blend of ideas from set theory, model theory and computability theory.

Results from Incomparable $\omega_1$-like models of set theory show that the embedding phenomenon does not generally extend to uncountable models. Current joint work of myself, Aspero, Hayut, Magidor and Woodin is concerned with questions on the extent to which the embeddings arising in the embedding theorem can exist as classes inside the models in question. Since the embeddings of the theorem are constructed externally to the model, by means of a back-and-forth-style construction, there is little reason to expect, for example, that the resulting embedding $j:M\to L^M$ should be a class in $M$. Yet, it has not yet known how to refute in ZFC the existence of a class embedding $j:V\to L$ when $V\neq L$. However, many partial results are known. For example, if the GCH fails at an uncountable cardinal, if $0^\sharp$ exists, or if the universe is a nontrivial forcing extension of some ground model, then there is no embedding $j:V\to L$. Meanwhile, it is consistent that there are non-constructible reals, yet $\langle P(\omega),\in\rangle$ embeds into $\langle P(\omega)^L,\in\rangle$.

CFTM 2015 extended abstract | Article | CFTM | Slides

The hypnagogic digraph, with applications to embeddings of the set-theoretic universe, JMM Special Session on Surreal Numbers, Seattle, January 2016

JMM 2016 SeattleThis will be an invited talk for the AMS-ASL special session on Surreal Numbers at the 2016 Joint Mathematics Meetings in Seattle, Washington, January 6-9, 2016.

Abstract. The hypnagogic digraph, a proper-class analogue of the countable random $\mathbb{Q}$-graded digraph, is a surreal-numbers-graded acyclic digraph exhibiting the set-pattern property (a form of existential-closure), making it set-homogeneous and universal for all class acyclic digraphs. A natural copy of this canonical structure arises during the course of the usual construction of the surreal number line, using as vertices the surreal-number numerals $\{\ A \mid B\ \}$.  I shall explain the construction and elementary theory of the hypnagogic digraph and describe recent uses of it in connection with embeddings of the set-theoretic universe, such as in the proof that the countable models of set theory are linearly pre-ordered by embeddability.

Slides | schedule | related article | surreal numbers (Wikipedia)